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important during recent years. By exploiting the direction.d stiffness properties of these

“'he role of composite materials in modern helicopter biade design has become most

composites, favorable torsion modes or "twisting” can be achieved. The capability to

apply this potentiel as a design parameter is generally xnown as aeroelastic tailoring.

The bending-torsional coupling of static, hingelrss ¢ xaposite rotor blades is investi-
gated using finite element theory. The hingeless Ulad: 15 rreated as a single cell lam-
inated shell beam. Each laminate is composed of difi:rent lay-ups of graphite-epoxy

composite plies and is categorized as isotropic or anisotxcnic based upon this lay-up.

A systematic study is made tc identify the evfccts of ply orientation and lamina
thickness on blade section properties. The results ot this study are used to solve the beam

Gasy e
. . o o .
equations for composite materials. /First, the beam is modeled and the fiber orientation

and thickness variations are selected. This is done using PATRAN® by PDA Engineer-

ing as hoth
(=]

a solid modeler and ag a pre-processor, The model than unde

men: analysis and posi-processing using ANSYS® version 4.34 by Swanson Analysis

Systemns Inc. The results are displayed both graphically and in numerical form. It is con-

cluded that this is an effective method of tailoring and analysis. [ ZIcoTom 7o
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Chapter One

Introduction

Aeroeiastic tailoring is defined as "tlie incorporation of directional stiffness into an
aircraft structural design to control aeroelastic deformation, static or dynamic, in such a
fashion as to affect the aerodynamic and strucwiral performance of that aircraft in a bene-
ficial way" [1]. In recent years, numerous efiorts have dealt with the effects of anisotro-
pic design on the aeroelasticity or deformation coupling of fixed and swept wing aircraft,
but very little has been done io mesearch its effects on rotorcraft and specifically rotorsys-
terns, Helicopter rotor biades nperate in an aeroelastic environment consisting of inertial,
aerodynamic and elastic loadings. This environm. .t is ideal for anisotropic design and

improvement and provides for the creative use of directional stiffness characteristics.

Composite material sys'2ms are now the primary materials for helicopter rotor sys-
tem applications. Currently, attention is being focused on the use of composites for
designing rotor blades in which the elastic coupling associated with unbalanced ply layup
is employed tc enhance the dynamic and aerodynamic characteristics. The type of rotor
and its control determine largely the aeroelastic behavior of a helicopter. Of special
interest nowadays are hingeless and bearingless rotor systems. The LHX helicopter pro-

ject, with its bearingless rotcr designs, is a prime example.

There are a number of aeroclastic phenomena associated with the design of hel-

icopters. The dynamic scbility and response characteristics of rotary-wing aircraft are



dependernt on parameters whicn have to be defined in the preliminary design phase. In
order to achieve maximum structural efficiency through aeroelastic tailoring, it is n=ces-
sary to use composite laminates with different ply angles. As a result, composite beams
will exhibit coupling among extensional stiffness, bending stiffness and torsional stiff-
ness. For example, bending-torsional stiffness coupling is necessary for pitch-flap stabii-
ity of rotor blades, and extensional-torsional stiffness coupling is desirable to change the
linear twist distribution. Even isotropic beams with pretwist will exhibit coupling

between extension and torsion [2].

Aeroelastic tailoring of a composite structure involves a design process in which the
materials and dimensions are selected to yield specific torsional characteristics. Due to
the dircctional nature of the comiposiie maicrials, it is possibie 10 construct blades with
different ply orientations and laminae thicknesses. These laminations can be either sym-
metric or asymmetric, where "symmetric” means that a layer of material at some distance
above a structural midsurface reference location has the idertical ply thickness, angular
orientation, and material properties as that of a lamina at an identical distance below the
midsurface [1]. If the fibers are placed off-axis in the upper and lower nortions of the
blade, a twist should be induced when exerting a non-torsional force. This provides a
potential for improving the performance of a lifting surface through aeroelastic tailoring
of the primary load-bearing structure. The design of such advanced structures requires
simple and reiiable analytical tools which can take into consideration the directional

nature of these materials.

The analysis of helicopter rotor blades has traditionally depended on classical beam

or shell theory. This is inadequate for the dynamic characteristics of orthotropic and




anisoxopically laminated shells which can be thought of as rudimentary rotor blade
structures. While analyses based on bsam-like representations are generally feasible
methods of structural analyses for many composite rotor blade structures, the design of

advanced rotor blades will often require a detailed shell-finite-element representation [3].

Finite element analysis has become an established and widely used tool in the
design of rotorcraft airframes. Kecently, however, research efforts have indicated a
grow:ing interest in applying these analysis techniques in composite rotor blade structural

analysis.

Most of the previous work in this area involves the feasibility of modeling compo-
site helicopter blades using finite eiement analysis and the treatment of the flexbeam or
spar as the modei base [2-3]. From this point investigators have attempted to determine
the structural properties by theoretical and experimental methods. Although some work
has been done on composite rotor design parameters that affect aeroelastic stability and
response, it mainly centers around arbitrary cross-sectional warping and vibration
response. It is uncertain if anyone has attempted to vary the lamination sequence and

angular orientation to manipulate the classical beam

equationg,

In the present research, a composite rotor blade is modeled as a hollow beam with
end caps. It can be shown that the composite rotor blade concept offers the chance to
accomodate aeroelastic coupling effects which may improve or deteriorate the response
behavior of the helicopter. Using the commercial package PATRAN®, a finite element
model of the constructed blade is created and an evaluation of the blade sectional proper-

ties is conducted. Four individual loading conditions are applied to eight disiinct blade

laminations to achieve the desired reactions. The results of the analysis using ANSYS®
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are applied to solve the classical beam equations.

Following a backgrourd chapter on the historv of aeroelastic tailoring and a sum-
mary of the work already accomplished in this area, a concise but complete chapter on
composite materials which includes lamination theory is provided. This has the advan-
tage of building a firm basis for the later development of the model and the significance
of the numerical results. The classical beam equations are then developed irn Chapter 4
and their validity for use with composite material beams is demonstrated through lam-
inate analysis theory. Chapter 5 involves the modeling process with the ensuing chapters
reporting the results and conclusions. The readers may find the appendices useful for
similar work involving PATRAN® and ANSYS®. The FORTRAN code for laminate
analysis is also includcd as an appendix.

One aspect of this research which the author found both frustrating and enriching

was the interfacing of the pre- and post-processors and the lessons learned when dealing

with large commercial packages whose companies are clearly competitors.




Chapter Two

Background

M.H. Shirk, T.J. Hertz and T.A. Weisshaar describe the historical evolution of
aeroelastic tailoring and cite significant examples of the early use of tailoring principles
[6]. These consider primarily the well-known effects of the bending of a sweptback wing
and the effective angles of attack which it induces. In his review paper, “The First Fifty
Years of Aeroelasticity” [7], A. R. Collar mentions the application of this bending
induced load relief principle to an unswept wing, where a downward bending would

cause incveased lift.

In a recent review article [8], H. Ashley and his co-authors note that, at the incep-
tion of manned powered flight, lifting surface flexibility was used to generate favorable
aerodynamic loads. The biplane structural truss of the original Wright Flyer exhibited
wing torsional flexihility which allowed a control cradle, operated by the prone pilot’s
hip movements, to provide differential twist to the bipiane wings. The result was a rol-
ling moment. While the use of structural deformability was quickly replaced by mechan-
ical devices, the Wright Flyer j.ovided what might be regarded as the world’s first

aeroservoelastic system.

Closer to home, Proiessor Max Munk, while at the Catholic Uaiversity of America

in Washington, D.C., used aeroelastic deformation to provide favorable propeller perfor-

mance. This design, patented in 1949, was entitled "Propeiler Containing Diagonally




Disposed Fibr »us Material”. The fibrous material was wood. The grain of the wood was
oriented to provide spanwise anisotropy such that bending due to lift caused the propeller
to twist nose-down in such a way that some lift, in this case propeller thrust, was
decreased at high speeds. As a result, an automatic, passive, favorable pitch change in
the propeller was achieved without the aid of a mechanic\al device. Wind tunnel tests
verified predictions of increased propeller performance at high speed as a result of this

tailored grain orientation [9].

Although ingenious, these first designs had minor repercussions in the aircraft
industry. This was primarily due to a lack of elastic materials other than wood and a lack
of understanding of the true need to incorporate this flexibility in the designs. However,
this was a step toward its use for helicopter blade design and these problems would

disappear with the introduction of composite materials.

In 1947, Cornell Aero Lab builv what were probably the first composite rotor blades
which used some fiberglass reinforced plastic (FRP) construction. These blades had
wood spars with FRP skins. They flew on a Sikorsky R-5. In 1953, Glenview Metal
Products built a GMP-2 Flyride helicopter with a main rotor blade of laminated spruce
forward cf the 30% chord and FRP skins on a balsa wood core aft of the 30% chord. In
1956, Prewitt Aircraft Company built three sets of research rotors for the Piasecki HUP-2
aircraft. One set was made of stainless steel, one of titanium, and one of FRP. The com-
posite blade had a wood spar. The Gyrodine XRON-1 introduced in 1956 had all-
fiberglass blades on some later versions. Parsons also built two different experimental
blades for the H-21 from stainless steel and FRP in the same period. One of the compo-

site blades failed in the whirl test stand and was never flight tested [10].



The easly 1960’s saw the initoduction of several composite rotor blade designs.
Among these were the Kaman H43-B blade of 1960 which had a wood core with FRP
skins on the afterbodies. The Bolkow BO-103 helicopter which first flew in 1961 had a
single main rotor blade made of FRP. The Boeing Vertol CH-47 blade of 1961 consisted
of a steel D spar with aluminum ribs and FRP skins. In 1962, Kaman flew an all-FRP

blade on the HH-43B helicopter [10].

It was the year 1968 that marked the beginning of the all-boron Advanced
Geometry Blade program for the Boeing Vertol CH-47. An all-FRP version of this blade
was designed and built in the same time period. Both of these blades were flight tested in
the early 1970’s. By this time, the future of helicopter rotor blades was clearly pointed in
the direction of all-composite construction and would progress to the advanced graphite-

epoxy blades of the 1980°s [10].

By 1982, at least 50 different all-composite main rotor blades had been designed.
A’ out 25 of those i1ad been flight tested and over 15 had progressed to limited or full
production status. The US Army had approximately 25 different composite rotor blade
programs underway at this time of which six had reached flight status. These six were

[10]:

1)  the CH-47 Advanced Geometry Blade (1972}
2)  the AH-1 Multi Tubular Spar Blade (1975)

3) the CH-47D Composite Blade (1978)

4) the AH-1S Improved Main Rotor Blade (1980)
5) the AH-64 Prototype Blade (1981)

6) the BO-105 Bearingless Main Rotor (1981)




Helicopters are usually classified according to the mechanical arrangement of the
hub in order to accommodate the blade flap and lead-lag motion anc .ccording to the
blade and hub bending stiffness. The most widespread helicopter configuration uses a
single main rotor and a small tail rotor. During the last two decades, the hingeless rotor
concept and its snccessor, the bearingless rotor, have found continuosly growing interest

among helicopter manufacturers and research organization.

With the evolution of advanced composites, the feasibility of designing rotor sys-
tems for high speed, demanding maneuver envelopes, and high aircraft gross weights had

become a reality. The desire to tailor the elastic qualities of these blades was soon to fol-

low.




Chapter Three

Composites

Advanced fiber-reinforced composite materials combine vastly superior specific
stiffness and strength characteristics (i.e. stiffness/unit weight and strength/unit length)
with reduced weight and increased fatigue life. These improved fatigue characteristics
are very significant to helicopter design because fatigue is probably the primary cause of
rotor blade failure. Composites make possible designs with fewer parts and improved
maintainability. In terms of manufacturing, it is possible to achieve more general aero-
dynamic shapes such as flapwise variation in planform, section and thickness [11]. Com-
posite materials are ideal for structural applications where high strength-to-weight and
stiffness-to-weight ratios are required. The adjective "advanced" in advanced fiber-
reinforced composite materials is used to distinguish composites with new ultrahigh
strength and stiffness fibers such as boron and graphite from some of the more familiar

fibers such as glass.

To understand fully the significance of composite materials, it is necessary to start
with the very basic element or building block which is the lamina. A lamina is an assem-
blage of fibers oriented in the same direction in a supporting matrix. The fibers supply
most of the strength and stiffness characteristics and the matrix holds these fibers in the
desired position. Advanced composites are made by laminating individual laminae in

specific directions in order to obtain the desired properties for the given structural com-
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pouent. Therefore, the knowledge of the mechanical behavior of a lamina is essential to

the understanding of laminated composites.

There are several assumptions which are made about a lamina and its components:

(2) The fibers are homogeneous, linearly elastic and isotropic. They are equally
spaced and perfectly aligned.

(b) The matrix is homogeneous, linearly elastic and isotropic.

These assumptions thea allow us to say that a lamina is macroscopically homogene-
ous, linearly elastic, macroscopically orthotropic or transversely isotropic and initially

stress free.

The directional properties of the lamina are the key to the limitless uses of compo-

site materials. In the fiber direction, the lamina is very stiff and strong while in the direc-
tion which is transverse to the fibers, the iamina is compliant and weak. The difference
in the strength in these directions is usually at least one order of magnitude; it is not
uncommon for the lamina to be 100 times stronger in the fiber direction. Figure 3.1 [12]

helps to illustrate the directional properties of a lamina. The longitudinal direction is

represented by 6 = 0° and the transverse direction by 8 = 90°.
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FIGURE 3.1. Directional Properties of Lamina

The description of the mechanical behavior of a composite lamina is based on stress-
strain relations referred to as Hooke’s Law. To model the stress-strain response of a lam-
ina, we use the generalized version for an anisotropic body. These relaiions have two
commonly accepted manners of expression; compliances and stiffnesses; as coetficients
of the stress-strain relations. Jones [12] provides a descripticn of these relations. The
generalized Hooke's law relating stresses to strains can be written in contracted notation

as
g; = C,'jF.j i,j=1,..,6

where o; are the stress components, C;; is the stiffness matrix, and €, are the strain com-
ponenis. The stiffness and compliance components are often referrsd to as elastic con-

stants. Both sets of components can be represented by the engineering constants

90
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E;, vij. Gij which are Young’s moduli, Poisson’s ratio, and the shear moduli respec-

tively. The engineering constants are particularly helpful in describing lamina behavior.

These relations reduce to 27 independent constants and can be represented by Equation

(3.1). These relations represent an anisotropic material since there are no plane~ of sym-

metry for the moaterial properties. This is the case in which none of the axes of the lam-

ina line up with the principal axes of materia! symmeiry.

[Ciy €12 Ci3
Cn Cn
Cxn Cn
Cou Cu
s Cas Cas
Cas Cag

Cis

Cas

Cie
Ca
Cis

&

€3
T2
a1

3.2

l“!uJ

If there is one plane of material property symmetry, the stress-strain relations reduce

to Equation (3.2) which is termed monoclinic. This relationship represents a lamina in a

coordinate system which is rotated in its plane,

0
o2
Ty
™
Ta
T2

> =

PCH Ci2Ci3 0 0 Cy
Ci2CxnCss 0 0 Cy
€13 CuaCyy 0 0 Cx
0 U 0 CuCus O
0 0 0 CysCss O
Clﬁ Cz; C36 0 0 C.r,(,

3.2)

If there are two orthogonal planes of material property symmetry, the stress-strain

relations are shown in Equation (3.%) and are said to define an orthotropic material. Note

wnat there is no interaction between normal stresses Op, 0, 02 and shearing strains

Y23, Y31, Y12 as in anisotropic materials.
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o| [cu€CaCi 0 0 0] 311

Gy CaCpCxn U 0 O £

T3 CaCnCss 0 0 O €3
1m[T]| 0 0 0 Cu 0 ©)ws! 3.3)
N ™| [0 0 0 0 Cs5 0w
g T2 0 0 0 0 0 Cellime

If at every point of 2 material, there is one plane in which the mechanical properties
are equal in all directions, then the material is termed transversely isotropic and has the
relations shown in Equation (3.4). This relationship expresses the response of a lamira
in the principal material coordinate system (PMCS). The PMCS is the coordinate system

in which the axes are aligned with respect to the structural material symmetry.

C; [Cy €1z Cia 0 0 0] £
0| |Ci2 Cxn Cn 0 0 0]]e
(o) Ci3 Cxyn Cxp 0 0 O €3
‘:,,L= 9 0 0 2(Cp-Cyp) 0 0 )7l (34)
K T3 0O 0 0 0 Ce U a1
. T2 0 0 0 0 9 Ces| | M2
. L)
if there are an infinite number of planes of material property symmectry, then the

. material is isotropic with only two independent constanis and Equation (3.4) becomes:

. . .
. o [Cy CipCis 0 0 0 & r
_ 6| |Ci Com Cm 0 0 0 £ :
14} Cyy Cxy Ca, 0 0 0 £ .
T[]0 0 0 2cy-Cy) 0 0 ||| @5)
w| |0 0 o 0  2Cn-Cu) 0 o |
. T2 | 0 0 O 0 0 UCn —Cr2)| [h2
. L B S
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For plane stress in the plane of the lamina, Equation (3.4) can be rewritten in terms
of the reduced stiffness matrix [Q]. Setting 63, 1,3, and T3, equal to zero, vhich implies
that €;, Y3, and s are zero also, leads to the following relationship between the inplane

stress components and the inplane strain components:

) Qi @12 O g
Oyr={Q12 L2 O € (3.6)
112 0 0 Qg Y2

Where the elements of the reduced stiffness matrix [Q] are given in terms of the elements

of the 3—D stiffness matrix [C].

Equation 3.6 defines inplane stresses and strains in the principal material coordinate
system of an orthotropic or transveresly isotropic material. However, the principal direc-
tions of orthotropy often do not coincide with coordinate directions that are geometri-
cally natural to the structure elements. Therefore, a coordinate transformation is neces-
sary in order to relate stresses and strains in a coordinate system not aligned with the
PMCS, Suppose that a layer is rotated through an angle 6 abont the z axis as in Figure
3.2. We can express its constitutive equations in the rotated, that is x~y coordinate sys-

tem by proceeding as follows.
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FIGURE 3.2. Rotation of Coordinate System

If we et

¢ =¢0s80, s =sin0

then the inplane stress and strain components in the principal material coordinate system
can be related to the inplane stress and strain components in the rotated coordinate sys-

tem through the transformation matrices [T';] and {T;] defined below:

c? 52 2s
(T11=| 52 ¢ —2cs (3.7)
=5 CS§ 02—s2

and
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(-'2 52 cs

[T2l=] s2 ¢ =—cs (3.8)

-2cs 2¢cs ¢2—s?

Using the above relations in Equation (3.6) allows us to relate the inplane stresses to the

strains in the rotated coordinate system in the following fashion:

o =[0]€ or & =[]0 (3.9)
where
[0]=[T;1" [Q](T3] (3.10)
and
[S]1=[TI" [S1(T] (3.11)

With the other benefits of composite materials, comes the ability to design or
prescribe laminate geometry. As mentioned previously, laminated composites consist of

differently oriented layers or laminae that are bonded together.

It is important to understand the motivation for laminating the plies discussed
above. Because each individual ply has very directional properties (Figure 3.1) we lam-
inate to combine the best aspects of the constituent layers in order to achieve & more nse-
ful material. This is done by tailoring the directional dependence of strength and stiff-
ness of a material to match the loading environment of the structural element. For exam-
ple, a structure that has a dominant uniaxial loading in the fiber direction, such as the
centrifugal force on a rotor biade, would need a predominantly unidirectional composite.

For more general lox ituations, the principal material directions are oriented to
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produce a siructural element capable of resisting load in several directions, Figure 3.3

previdas an erampie of layering with different ply orientations.

T )

{////////J///

FIGURE 3.3. Laminate Construction

Laminated composites are generally strong and stiff in the plane of lamination and

weak and flexible in the wansverse direction. This stiffness is obtained from the proper-
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ties of the constituent laminae. Laminated plates are one of the simplest and most
widespread practical applications of composite laminates. They will be used in this work
as they are uniquely suited to its objective. Therefore, a summary of lamination theory is
provided.

Lamination theory allows us to predict the ensuing properties of a laminated plate or
structure when the properties, dimensions and stacking sequence of individual plies are

specified, Figure 3.4 [12] displays the geomeiry of a layered laminate.

: T
z,
‘ 2
2 zZ, 22’[
IS B N S | __MID-PLANE __ | ¢
jz {
k Z
Zy
N w \

4_ LAYER NUMBER

FIGURE 3.4, Geometry of an N-layered Laminate

There are two static parameters which are used to describe the response of a lam-

inate. The first is in-plane force resultants defined as:
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Nx H Gx]

Nyt={ oy}dz (.12)
“H

Ny Gy )

The second is the in-plane moment resultants defined as:

M, H | Ox

Myt=|1o0,¢ zd (3.13)
v | H

2] Ty

The kinematic parameters which are used to describe the response of a laminate are

based on the following assumptions:

(@

®)
©

The laminate consists of perfectly bonded laminae, each of which are in a state of
plane stress.

o r= - Q»n 0x|1¢g (3.14)

Tay - = Q| |t

The normals to the midplane remain straight and normal to the deformed midplane.

The normals do not change in length.

The last two assumptions are a consequence of the Kirchoff-Love hypothesis. This

yields:

and

du__2ow
2 o (3.15)
v ow

'é;=——ay— (3.16)
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Also, by expressing th» inplane displacement components in the following fashion:
uxy,z)=uCy) + 7 (x,y) (3.17)
and
v(x,y,z) =v°x.y) +2g (x.y) (3.18)

which is consistent with the Kirchoff-Love hypothesis, it can be shown that the in-plane

strains are a function of the in-plane strains of the midplane and the curvatures ( ¥ ) of

€ e°% Ky
& (=1&%+21 X, (3.19)

the midplane:

where

-

aw

2
[2]_i=
o b=—] Zwl 2
[ dy
o 9w
oxdy

-~
»
I

Nt

Combining this equation with Equation (3.14) yields:

—k
of_, =Q €°+:zx 3.21)

By inegrating the equation for in-plane forces with this equation, we arrive at the follow-

ing result:
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N =,5_§° +§1f (3.22)
where A;; is the extensional stiffness laminate matrix which is writien as
N _
3:: Qij (Zk~2k-1) (3.23)
and where B;; is the extensional bending coupling matrix which is expressed as
B —-;- )A_{ G5 F~28-1) (3.24)

This particular matrix will become zero when a symmetric laminate (see Chapter 1, page

2) is used. By integrating the equation for in-plane moments with equation (1.20) we
gei:

M =Be° +Dx (3.25)
where D;; is the bending stiffness matrix which is written as
- 1 N k. 2.
Djj= 3 2_, Qi; 2k —Zk-1 ) (3.26)

The bending stiffness matrix is important to this research as it is the factor which causes

the torsional motion of the blade. The D 5 torm is the key element of the matrix

The final results of this procedure are the constitutive equations for laminate

analysis theory. They are expressed for 2ll composite material laminates as

Iy‘ &
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Laminates are not without their problems, however, as potentially adverse shearing

and normal stresses are introduced between adjacent layers in the vicinity of the free

edge. Such stresses may cause delamination. These stresses are out-of-plane or inter-

laminar stresses which arise to satisfy equilibrium requirements at the free edge.

it




Chapter Four

Governing Equations

A thorough understanding of the mechanical behavior of a structure is essential for
its effective design. This includes helicopter rotor blades. The use of physical properties
of composite materials, as well as numerous theoretical laws and concepts, becomes the
basis for this understanding. Mechanics of materials is a branch of applied mechanics
that deals with the behavior of bodies subjected to various types of loading. The objec-
tive of this particular analysis will be the determination of the deflections and displace-
ments of a simple blade model produced by these loadings. This data will then be
applied to the Euler-Bernoulli beam equations to determine the off-diagonal term

response to the loading of composite material lamination sequences.

This research will center arourd only one finite element model, however there will
be eight individuai blade cases examined. These eight cases are concemed with seven
anisotropic composite material lay-ups and one isotropic lay-up. Each of these cases will
be subjected to identical loading conditions consisting of four separate loads. They con-
sist of two bending moments, a torsional force and an axial force, and will be described

in detail at a later point.

Theie are certain properties of area whick: are needed for this beam theory, such as
the location of the centroid, the first moment of the area and the second moment of the

area or the moment of  rtia with respect to each axis.
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The bending axis of the beam under investigation is the longitudinal axis through
which the transverse bending loads must pass in order that the bending of the beam shall
not be accompanied by twisting (for isotropic materials). The shear center or center of
twist for any transverse section of the beam is the point of intersection of the bending

axis and the plane of the transverse section [13].

The bending axis and the shear center are of special importance in beams having
cross sections composed of thin parts which offer large resistance to bending such as in

airplane or rotor blade construction.

The bending axis for a beam whose cross section has two axes of symmetry is the
longitudinal centroidal axis of the beam and hence the shear center for such a section is
also the ceniroid of the section. When conducting experiments, for example, the axial

force and constraints must act through this centroid of the cross-sectional area.

Calculaticn of the moments of inertia (second moments of the area) requires a sub-

stantial effort for complex geometry cf this type. Using the equation

I, =J'IJ;22dA 4.1)

and the fact that the blade is symetric about the y axis, we obtain

y=2f I,zzsz (4.2)
Al

where z = rcosP. See Figure 4.1. Substituting for z we obtain



I, ={ [ r’cos?da
AR
Since dA =dst and ds = redf, then

T

I,=2 1[ tr3cos?Pdp

25

(4.3)

4.4)

/

(2]

—_—

y =rsinf

z=rcosB

A similar derivation can be completed to deiermine the moment of inertia about the

Z axis. Since

1,=Iy2dA

then

(4.5)
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;=2 {tr'%sinzBdB (4.6)

Since the radius 7 is an arbitrary function of B, 2 numerica! solution to this equation
is preferred. A Short code was written 30 divide one half of the blade into 24 elements
and o calculate the average radius for each element to the centroid. Then a simple sum-

mation for each moment of inertia was compieted.

24
ly =2 }_‘,lt,'s,-m,- @.n
i=
and
%4
I,= 22 Lsin; (4.8)
i=}l

where s is the element length and where m = rcosf and n = rsinf.

The four lcading conditions will now be examined. In this problem, a rotor blade

represented by a hollow shell beam of length L with end caps as shown in Figure 4.2, will

» used, The bear

e

hnut tha 4 Ar tvancvarca nvico nnd tha o« nwia
L L0t 441V _], VA WMMILT VWi oW AALT AliU LY A GALD

runs along th I2ngth of the blade.

3 .'" .".. S




27

FIGURE 4.2. Roter Blade Model

The blade is loaded in tensiou by an axial force P and constrained at the other end. See

Figure 4.3 [14].
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FIGURE 4.3. Axially Loaded Beam

If the force P acts at the centroid of the cross section, the stress in vhe beam at sections

away from the ends is given by:

£
o== (4.9)

where A is the cross-sectional area. Additionally, the strain can be expressed as

=38
£= I (4.10)

where 8 is the displacement produced by the axial force. Utilizing Hooks's law
(o = Ee), the equation for beam displacement is given as:
PL

8= 2% (4.11)

Since the axiul force varies along the axis of the beam, an expression for displacement

along the entire length of the beam is obtained. Also, we will denote the displacement of
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the beam in the x direction by u.

L
(P&
u= { EA dx 4.12)

The second force to be examined is that of torsion. Torsion refers to the twisting of
a structural member when loaded by couples that produce rowtion about its longitudinal
axis. In this case, the x-axis is the longitudinal axis. This type of loading is pictured in
Figure 4.4 which shows the same beam now constrained at one end and load:d at the

other end with a moment about the x axis.
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FIGURE 4.4. Torsional Loading

During twisting, there will be a rotation about the x-axis of one end of the blade

with respect to the other. The free end will rotate through a small angle  with respect to




the fixed end. The angle B is referred to as the angle of mwist.

This angle of twist can be expressed in the form:

TL

B= -I—P (4.13)

where T is the torque and Gi, is the torsional rigidity. A combination of the polar

moment of inertia, I,, the shear modulus, G, and the length yields the torsional flexibility

. This expression is analagous to the axial flexibility, ——, given in Equation

G, EA

(4.11) [14]. The shear modulus relates to the modulus of elasticity by the equation
E

C=2a+w

(4.14)

The term [, or the polar moment of inertia, is not an ideal term for this model. It is
best suited for solid circular beams. Thin walled beam theory describes a similar term, J,

or torsion constant, which will be used where:

4A2

T=1
s (4.15)
I

4

For constant thickness ¢, this equation becomes:

442
Ly

(4.16)

where L,, is a median line (see Figure 4.5) and A,, is the area enclosed by the median

line.



FIGURE 4.5. Median Line of Cross Section

k)|

The next loading condition will be acting transversely to the longitudinal axis. The

created load is that of a bending moment. These lateral loads cause the beam to bend or

flex, thereby deforming the axis of the beam into a curved line. An illustration is given

in Figure 4.6 which shows the same beam which is subjected to a bending moment about

the transverse or y axis.
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FIGURE 4.6. Cantilever Beam Under Bencing. Mornent
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After loading, the axis is bent into a curve that is known as the deflection curve of
the beam. Now consider two points m; and m, on the deflection curve (Figure 4.7) [14],
where point m is at distance x from the z axis and point m, is situated a small distance

ds further along the curve.

FIGURE 4.7. Curvature of a Bent Beam

At each point, if we draw a line normal to the tangent to the deflection curve, a
center of curvature will occur at point O’. The length of this normal is called the radius

of curvature and is defined as p. As defined in calculus and analytic geometry, the cur-
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vature X, is the reciprocal of the radius of curvature:

1
K= — 4,17
0 (4.17)

Also, from the geometry of the figure, we obtain

pdo = ds (4.18)

where d¢ is the small angle between the normals and ds is the distance along the curve
between the normals. If the deflections of the beam are small, which is the case in this
research, then the deflection curve is very flat and thz distance ds along the curve may be

set equal to its horizontal projection dx and we obtain

-4 (4.19)

k=+
p dx

Using the fact that the integral of all elemental moments over the entire cross-sectional

area must result in the total applied moment

M, = —Jc,,ydA (4.20)
and Hooke’s law for uniaxial stress
o, =—Exy “4.21)
we obtain
M =—xEI §4.22)

Rearranging and combining with equation (4.17) we 2-rive at [14]




1 M
K= F =- (4.23)
and consequently
ox El (“@.24)

A similar bending moment about the vertical or z axis yields an analagous equation;

M
e (425

The result of each of these loadings and the equations which will be used to analyze

the da‘a can be expressed in ma'rix form as foliows:

.
3] [.L
i el 0 0 0
T,
% 1 *
Rl logr o ol
{30 b= (4.26)
9y 0 o -1_ o M,
ox E.I, P J
du 1
w10 0 0 £

The off-diagonal terms of Equation (4.28) in general will not be zero for anisotropic
materials. This is due to coupling. The response of these terms for different laminations
sequences will be the focus of the present iesearch. As anisotropic composite materials
are loaded, these terms should take con a non-zero identity and should have varied reac-

tions to different lay-ups.

It is important to note at this point that one can use the displacement information for

this model which is taken at a sufficient distance from the ends as a result of St. Venant’s
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principle. We can say that the effects of surface tractions over a part of the boundary thar
are felt relatively far into the interior of an elastic solid are dependent only on the rigid-
body resultant of the appiied tractions over this part of the boundary. By this principle
we can replace the complex supporting force distribution exerted by the counstraints on
the beam by a single force and couple. Although we shall not present them here, it is
pointed out that mathematical justifications have been advanced for St. Venant’s princi-

ple (Goodier, 1937; Hoff, 1945; Fung, 1965) [13].

Before moving on to another area, some mention of the relationship of equation
(4.26) to composite materials must be made. Since beam type specimens under loading
conditions are utilized in composite material characterization, a theory for laminated,

anisotropic beams is also desirable.

Beam bending is often based on homogeneous isotropic beam theory. For lam-
inated materials such as the composite blade model in this research, the classical beam
formulas must be modified to account for the stacking sequence of individual plies.

Whitney provides the best description of this modification [15].
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FIGURE 4.8. Laminated Beam

Consider the laminated beam showr in Figure 4.8. It has been shown by Hoff and
Pagano that layered beams of this type in which the plies are oriented symmetrically
about the midplane and the orthotropic axes of material symmetry in each ply are parallel
to the beam edges can be analyzed by the classical beam theory previously explained if
the bending stiffness EI is replaced by the equivaient stiffness E [ defined in the follow-

ing manner:

b N krk
Eil=3 EM 4.27)
=1

where Eﬁ is the effective bending modulus of the beam, Ef‘ is the modulus of the kth
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layer relative to the beam axis and N is the number of layers in the laminate.

Equations which are applicable to a general class of symmetric laminates can be

derived by considering a beam as a special case of a laminated plate with a length much
larger than the width, i.e., L > b.

For bending of symmetric laminates, the constitutive relations (Chapter 3) reduce to
the form:

M; Dy Dy Dy| [ %
Myt =|Dy; Dy Dyl x, (4.28)
M, D¢ D26 Dgs| | Kyy
where
2w 9w *w
sz—-—-—-axz ,Ky=——""—‘ay2 ,ny =_28x3y (4029)
For this derivation, it is uscful to consider Equation (4.28) in the inverted form
-
() [D} Db Dl M)
L]
i = D}, Dy Das 1 M, (4.30)
Ky D} D3s Des| | Mo
where D}'j are clements of the inverse matrix of D;;
In order to derive a beam theory the following assumptions are made:
My,=M, =0 4.31)

Using Equations (4.29) and (4.30) in conjuction with Equation (4.31), we find
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Ky =—5—2—=D11Mx (4.32)

Since this beam is assumed to have a high length-to-width ratio, we can state that

w=w(x) 4.33)

Combining Equations (4.32) and (4.33), we obtain the following result:

d?w M

—dx—2=— E,’:I 4.34)
whete
iz bh’
b =~ M=bM,, [ =——
Ex hsD;l ’ X 12 (4.35)

and b is the width of the beam. Equation (4.34) is in the same form as classical beam
theory with the homogeneous, isotropic modulus E replaced by the effective bending
modulus of the laminated beam, E2 [15). This composite beam analysis allows an
elasticaily-coupled composite structure to be described in terms of its equivalent

engineering properties (EA, EI, GJ).
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Chapter Five

The Model

5.1, Finite Element Modeling

The first step toward the complete analysis of an aeroelastic problem is the develop-
ment of an accurate geometric and structural model. This chapter summarizes that
development process. A theoretical rotor blade model based upon composite construc-
tion is used in this research. Certain structural elements, such as spars and helicopter
rotor blades, can be approximated as beams. Rotor blades almost always involve compli-
cated cross-sectional geometries, and combined axial, bending and torsional loadings. A
major obstacle in applying this model toward understanding the effects of composite

materials on aeroelastic tailoring is that analytical tools for such a purpose are limited,

The finite element method was chosen for this work as it provides a basis of modem
structural analysis. It is a powerful method to treat nonuniformities and complex
geometries such as a twisting helicopter blade. Finite element analysis has been used
previously (Hong, 1985) to examine the acroelastic stabiiity of helicopter blades in both

hovering and forward flight [16].

As stated earlier, finite element analysis has become an established and widely used
tool in the design of rotorcraft and more recently in composite rotor blade analysis. In

addition to multi-purpose finite element codes which have composite material capability,
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composiie plate and shell finite elenients have been formulated. Numerous research
cfforts have resulted in the development of shell elements with anisotropic laminate

capabilities. The result of these efforts are found in numerous large commesrcially avail-

able packages such as PATRAN® which can be used for comprehensive analytical

representations using Jetailed shell finite element models.

The specific advantages of a finite element solution procedure are as follows [4]:

(2) The formal derivation of the complex nonlinear equations of motion of the
problem is not required.

(b) Each of the nonlinear terms is dealt with in a rational fashion while bypassing
the need for an ordering scheme.

(c) The complex structural behavior of the blade is accurately modeled.

(<) Both the undeformed and deformed geometry of the blade are taken into
account in a natural fashion and are available for graphics viewing,

For the analysis of a slender rotor blade, a beam element seems most appropriate
since only 2 small number of degrees of freedom are required. However, the accuracy of
a simple Euler-Bernoulli bear: model for this research has been questioned in Chapter 3.
This probiem J--zfore requires a two-dimensional laminated shell eiement to model
clastic couplings of anisotropic composite materials.

In the present work, the composite static blade is treated as a holle ¥ semi-
cantilevered laminated shell beam with end caps &s shown in Figure 5.1.1. The modei is
representative of the size of a main rotor blade in order to assess the izapartance of ply
angle oricntation. The beam section is assumed to be a single airfoil shaped cell consist-
ing of six sections which represent laminaies; two on top, two on bottom and two as end

caps. rigares 5.1.2 and 5.2 provide a cross-sectionul view of the end cap and laminate
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FIGURE 5.1

Finite Element Beam Model and End Cap




FIGURE 5.2

PA'TRAN 4-Patch Construction
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section view respectively.

The solid modeling is done on PATRAN® by using a series of grids, lines and
patches. PATRAN® is an interactive engineering program with the ability tc construct,
view, verify, analyze, manipulate, and demonstrate [17]. The four surface laminates and
two end caps were constructed as six individual patches. Each patch was assigned a
material property identification. This property was based on the construction of a
number of composite layers with specified angle orientations and thicknesses. The
marerial property option of LAM or LAMS in PATRAN® was used to specify the

number of plies, their individual thicknesses and their orientations. A description of all

of the commands for model generation is given as a session file in Appendix B.
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The constitutive relations of an orthotropic graphite fiber (T50 Fiber) and isotropic
matrix (Fiberite 934 Epoxy Resin) were used. The volume mix of fiber to matrix used
for the composite was 60% to 40% respectively. The properties can be found in Table
5.1 below.

MATERIJAL PROPEL.TIES
| Property (Units) TS0 Fiber | Epoxy Matrix

Ep (Psi) 56.3 0.674
Er (Psi) 1.10 0.674
VLT - 041 0.363
vrT - 0.45 0.363
Grr (Psi) 2.20 0.247
Grr (Psi) 0.50 0.247
oy (Win/in F) 0.50 25.0

or (Winlin F) 6.50 25.0

TABLE 5.1




The resultant graphite/epoxy composite properties are shown in Table 5.2.

Graphite/Epoxy
Property | (Units) Gr/Ep
E, (Psi) | 19.2x10°
E, (Psi) | 1.56x 10°
E, ®si) | 1.56x 10°
V12 .- 1.95x 1072 it
Va3 21
Vi3 .801 x 1072
G (Psi) 82x 10°
TABLE 5.2

The analysis code used was ANSYS® by Swanson Analysis Systems Inc. The

ANSYS® program is a large-scale, general purpose computer program for the solution of
several classes of engineering analyses. It uses the wave-front direct solution method for
the system of simultaneous linear equations developed by the matrix displacement
method. The program has the capability of solving large structures with no limit on the
number of elements used in an analysis [18]. There is no "band width" limitation in the

analysis definition; however, there is a "wave-front” restriction of 2000 degrees of free-

dom. There are some peculiarities in ANSYS® associated with the elements used for this
laminated shell medel. "The element is an elastic flat triangular element with both bend-
ing and membrane capabilities (Sec Figure 5.3) [18]. Up to 15 different layers of
material are permitted per element and both in-plane and nomnmal loads may be applied.
The e.ement has six degrees of freedom at each node. There is no significant stiffness

associated with rotation about the element z axis. A nominal value of stiffness may he
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present to prevent free rotation at the node. The triangular 2-D elements are less accurate
than equivalent-sized quadrilateral elements but must be used for laminated shell
analysis. When using triangular clements in a rectangular array of nodal points, the best
results are obtained from an element pattern having alternating diagonal directions.
Also, since the element coordinate system is relative to the I-J line, the stress results are

most easily interpreted if the I-J lines of the elements are all parallel.

Element Coordinate System

<

FIGURE 5.3. Laminated Shell Element (STIF53) Geometry

The model was set up for finite element analysis using flat two-dimensional triangu-

lar elements constructed over three nodes, TRI/3/53, where 53 is the stiffness coefficient

corresponding to the laminated shell configuration of ANSYS®. A nine node element,
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TRI/9, was preferred but was impossible under the ANSYS® restriction of three nodes
per element when using laminated shells. The result was 760 elements and 310 nodes
constructed cver the entire blade region. In addition, the end caps were assumed rigid

and were therefore modeled with much thicker and stiffer elements. Once these finite

elements were defined using the connectivity sub-program of PATRAN®, the model was
subjected to automated geometric equivalencing over each of the elements. This is sim-
ply the process of selecting a single ID for all node points which coexist at a given point
(and as a result have different ID numbers) and propagating that change through any
existing connectivity definitions. The next step was the optimization of the model by
selection of the maximuum wavefront criterion for both the Cuthill-Mckee and Gibbs-
Poole-Stockmeyer methods. The result is element compaction based on the assignment
of sequential ID numbers to remove any "holes" or spaces in the original numbering,

sequence.

Forces, displacements, pressures and constraints are initiated at this point. It
required several attempts to determine the best way to constrain this model. The accu-
racy of the displacement results was very much dependent on the constraints chosen. An
example of a poorly constrained model can be seen in Figure 5.4. This particular model
was constrained (six degrees of freedom) at one node on the leading edge of the center of
the blade. An axial force was applied at each end in opposite directions. The result

should have looked something like Figure 5.5.
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NEWBLADEP

ANSYS 4.3
FEB 3 1933
11:56:25
PGST1 OISPL.
STEP=1

ITER=1

DM =0.818185

YU =1
DIST=44
XF =48
YF =4.5

FIGURE 5.4

Improperly Constrained Model
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FIGURE 5.5. Beam Response to Axial Load

Finally, for simplicity in arriving at a solution, one end of the blade model was con-
strained. This constraint occurred at each node on the end cap in each of its six degrees
of freedom (three translational and three rotational). This was used to simulate the hub

attachment for the blade.

The other end underwent forces in varying amounts and directions. Each of the
eight ply configurations were subjected to identical loadings. Three of the four loading
conditions were applied at a node on the end cap which represented the centroid (See
Chapter 4) of the blade and consisted of an individually applied torsional load T, and
moments about the y and z axes, M, and M,. The fourth load was an axial force P and
was applied at the neutral axis of the blade. Since there was not a node located on the
neutral axis, the force was distributed over the nodes of the element in which the neutral

axis was located.

All of this information. is pre-processed by PATRAN® and compiled in a neutral
file in preparation for analysis by ANSYS®. Following the analysis, the information

would normally go throu .« a reverse translator and be post-processed by PATRAN®,
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However, we were unable to post-process in FATRAN® due to the two commercial pro-
grars being incompatible on the University of Virginia’s current version of PRIMOS
(Version 21.0.2). Instead the post-processing was done using POST1 in ANSYS43.A%,
The results are displayed graphically for deformed and undeforined geometries, fringe,
carpet and contour plots, or stress and displacement plots. The graphics capability of this

new version are much improved over the older version of ANSYS43%,

8.2, Coordinate System

The rotor blade is treated as a nonrotating (Q = 0) elastic beam. Therefore, a rec-
tangular coordinate cystem, x, y, z, is used and attached to the undeformed blade. The
longitudinal direction of the blade aligns with the x axis and the y axis corresponds to the
transverse direction. The z axis correlates to a right-handed coordinate system. The
angles of rotation about each of the axes, (B, 9 and y for x,y,z respectively) are shown in

Figure 5.6.
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It is assumed that the end caps provide the required blade structural stiffnesses in each
direction. Each laminate consists of a number of laminae with ply orientations which are
different than the beam axis orientation. A point p on the undeforme. axis, undergoes
displacements ¥, v, w in the x, y, z directions respectively and occupies point p” on the

newly deformed axis.
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£.3. Ply Configuration

Two criteria were used in the selection of ply lay-ups and orientations for each con-
figuration. The first required that the blade did not exhibit static instability and the
second was that the result would have coupling characteristics which were large enough
to have identifiable effects. The blades are eight-ply graphite-epoxy laminate beams
which have strong bending-twisting coupling. Favorable and unfavorable angle-of-attack
changes can be obtained depending on the bending-twisting coupling (D 16) terms. There
are cight different lay-ups used in this research. Seven are anisotropic configurations
with the angle orientation of two layers changing systematically to determine its result as
a parameter of the off diagonal terms in the beam ecuations. The eighth lay-up is an iso-
tropic configuration and is used to verify the accuracy of the blade model. These ply

configurations can be seen in Table 5.3.

SYMMETRIC
LAMINATION CONFIGURATIONS
PL‘ Bl AT\E: BI AnEtz Bl .\hEs B- AI\E“ B- .-\ES 5. ._.Et.,- B. ...E7 B- __Es
1 0° 0° 0° 0° 0° 0° 0° 0°
2 30° 36° 30° 30° 30° 30° 30° 45°
3 0° 15° 30° 45° 50° 75° 90° 135°
) 90° 90° 90° —50° 90° 90° 90° 90
MIDPLANE
—_— —
5 20d 50" o007 L 50° o 30° |
6 o 15° 30° 45° 60° 75 | 90° | 135°
7 30° 30° 30° 30 30° 30° 30° 45°
s 0° 0° [ 0 0° 0°
TABLE 5.3

Table 5.4 shows the laminate properties for each blade. They were calculated using the



laminate analysis program in Appendix A.
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5.4. Blades I-VII (Anisotropic)

LAMINATE PROPERTIES
~- | BLADE1 | BLADE2 | BLADE3 | BLADE4 | BLADES | BLADE6 | BLADE7 | BLADES
E | 11.63x10° | 9.19x10° | 7.63x10° | 7.23x10° | 7.29x10° | 7.33x10° | 7.24x10° | 7.58x 10°
E | 611x10° | 6.11x10° | 6.13x10% | 644x10° | 7.29x 10° | 8.96x10° | 1051x10° | 7.58x 10°
G, | 143x105 | 138x10° | 1.63x10° | 1.85x10% | 1.71x 10° | 1.44x10° | 1.36x10° | 2.92x 10°
Vo 117 .105 123 .106 057 03 .068 298
Vi 062 070 099 094 057 028 099 298
TABLE 5.4

The first seven blades were designed to exhibit bending-coupling characteristics.

Using the LAMS option for laminated materials, an eight layer composite was built.

Each layer had the same thickness of 0.015 inches. The four layers on the top were sym-

metric with the bottom four plies. The angles of orientation can be seen in Table 5.3

above. The 60/40 mix of TS50 Fiber (Graphite) and Fiberite 934 Epoxy Resin was used.

The angle of ply orientation, 6, was changed systematically for the third and sixth layers.

The first blade has 8 = 0° and blade seven has 8 =90° with a 15° increment for blades

two through six. Four forces, My, M,, M, and P, were applied individually to each

blade.

§.5. Blade VIII (Isotropic)

This blade model was designed to exhibit isotropic characteristics. It was built

using the LAMS option of PATRAN®, There are eight layers of equal thickness (0.015
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inches). The angles of ply orientation are shown in Table 5.3 and should produce isotro-

pic behavior when the forces are applied. Once again, four forces, My, My, M, and ¥,

were applied individually.
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Chagter Six

Results

Numerical calculations are carried cui through finite element analysis for a compo-
site material rotor blede. TLe blade is discretized into 616 elements and the data is col-
lected ac twelve nodes; six along the leading edge and six alorg the irziling edge. The
behavicr at two tlade sections is evaluated. One section (Section 1) is located at the
center of the biade length and the other section (Section 2) is located in the last quarter of
thc blade but at a sufficient distance from the end cap. The model is analyzed for eight
blade larninations (seven anisotropic and one isotropic) which undergo four seperate

loading conditicns.

The output from ANSYS® (See Appendix E), consists of displacement; in the three
principal directions; UX, UY, and UZ for each node. The sclected nodal displacements
are entered into a data file for further evaluation by the FORTRAN code in Appendix C.
This program calculates the rotations about each axis (B, ¢, y for x,y,z respectively) and
the displacements along the longitudinal axis. The data is also manipviated to produce
the first derivative of each of these values with respect to the blade span. The stiffness
matrix, [C] , is formed for both sections of each blade. A modified finite differencing

method is used to calculate the rotations from ihe given displacements and is explained

below,
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The beam equation matrix which is represented by Equation (4.26) can be expressed

again as:

(9B ]
ox -
3 ayn ap aps aw] | Ix
2> az ax axn ay| |M,
1 ﬂf: as a3 a3 ayn| | M| v (6.1)
ox a4 a4 a43 aaa| | P
ou .
ox
L J
Since the forces are known, one must calculate QQ ﬂ _a_w_ and -a—u- in order to solve

ox’ ox’ ox ox

for the stiffness terms in the matrix above. The use of

_agg _Bin 2—113:-1 62)
where
o _ -[sz'?l _UZ;TH] (6.3)
Pi+l1 = b
and similarly
~-|vuzk, - UZ-T_II]
By = [ S (64)
‘ b

and where i—1, i, and i +1 are consecutive increments of length (/) along the blade length
allows for the computation of § and its first derivative and leads to the sofution of the

first column of the stiffness matrix.
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If
UZ}y —UZ}
uin = (65)
where
vzg =vzk [1-¢) + U2l (66)
and
UZfy =UZis [ 1- C] +UZly§ 6.7)
then
dJ fu —2UZ7 - UZ{,
5% == (6.8)
And similarly,
9.1 —=20Y? - UY?_
ay = UYin i i1 (6.9)
ox 12
Finally, the derivative of u is defined as:
o _UX?
ou  UXiv — U%i (6.10)

o 21
Equations 6.8, 6.9 and 6.10 are used to solve for the second, third and fourth columns of

the stiffness matrix respectively. The matrices are then assembled for each blade. They

are shown below.



MATRIX FOR SECTION: 1, BLADE: 1

S82198E-07 -.648599E-08 .110397E-09 -.372616E-08
-.646000E-08 .259820E-07 -.590831E-09 -.966120E-08
202181E-09 -.594695C-09 .579233E-08 .210487E-09
-.357498E-C8 -.9695'97E-08 .195244E-09 .501077E-07

MATRIX FOR SECTION: 2, BLADE: 1

ST6136E-07 -.677641E-06 .129622E-09 -.360332E-08
-.636547E-08 .258174E-07 -.68.:216E-09 -.968831E-08
-.138691E-09 -.536155E-09 .565750E-08 .274261E-10
-412470E-08 -.972916E-08 -.237S09E-09 .495678E-07

MATRIX FOR SECTION: :, BLADE: 2

S97071E-07 -998768E-08 .828957E-10 -,101376E-07
-996914E-08 .287017E-07 -.391494E-09 -.691174E-08
210321E-09 -.396723E-C5 .669389E-08 .795812%-1

-993147E-08 -.693385E-08 .585059L-10 .555784E-07

MATRIX FOR SECTION: 2, BLALE: 2

592261E-07 -.104780E-07 .649079E-10 -.100703E-07
-981416E-08 .283538E-07 -.585838E-09 -.694357E-08
-.130799E-09 -.419017E-(9 .641803E.08 -.478981E-10
-.104133E-07 -.722706E-08 -.769398E-09 .55(485E-07

MATRIX FOR SECTION: 1, BLALE: 3

.500480E-07 -.111859E-07 .221594E-10 -971455E-08
- 111937E-07 .308369E-07 -.194795E-09 -.400552E-08
138787E-09 -.190835E-09 .737674E-08 .145800E-11
-.952498E-08 -.399955E-08 .483645E-11 .604304E-07

MATRIX FOR SECTION: 2, BLLADE: 3
497724E-07 -.118054E-07 -.164852E-10 -.969432E-08
-.110411E-07 .305075E-07 -.370755E-09 -.405130E-08

~.306253E-09 -.238398E-09 .703087E-08 -.109083E-09
-.100369E-07 -.433010E-08 -.902971E-09 .598740E-07

MATRIX FOR SECTION: 1, BLADE: 4

A38927E-07 -.114499E-07 -.295917E-1i -422881E-08
-.114735E-07 .307596E-07 -.104341E-09 -.212956E-08
902146E-10 ~.995612E-10 .742222E-08 -.171720E-10
-.408496E-08 -.212293E-08 -.112840E-10 .604906E-07
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MATRIX FOR SECTION: 2, BLADE: 4

437602E-07 -.121026E-07 .872368E-11 -.419622E-08
-.113331E-07 .304896E-07 -.217743E-09 -.216331E-08
-404176E-09 -.585793E-10 .704398E-08 -.153504E-09
-465988E-08 -.225900E-08 -.887374E-09 .599169E-07

MATRIX FOR SECTION: 1, BLADE: 5

A73131E07 -.118224E-07 -.357026E-10 -.135087E-10
-.118509E-07 .290284E-07 -.993379E-12 ,184891E-11
404266E-10 -.140037E-12 .701748E-08 -.167640E-10
927771E-10 -,132395E-11 -.189042E-10 .565798E-07

MATRI¥ FOR SECTION: 2, BLADE: 5

472095E-07 -.124535E-07 .223G54E-10 .139275E-10
-.116972E-07 .287571E-07 -.564925E-10 -.283551E-10
-.36G083E-09 .118199E-09 .662338E-08 -.184275E-09
~466199E-09 .330131E-10 -.905433E-09 .560019E-07

MATRIX FOR SECTION: 1, BLADE: 6

566060E-07 -.112748E-07 -.112823E-09 -.139777E-08
- 112952E-07 .264781E-07 .201259E-09 .315211E-08
-452902E-10 .200743E-09 .633755E-08 .155130E-10
-.129999E-08 .314820E-08 .374775E-11 .510225E-07

MATRIX FOR SECTION: 2, BLADE: 6

J19927E-05 -.117927E-07 -.825691E-10 -.145466E-08
410326E-05 .261994E-07 .182398E-09 .309478E-08
-257063E-09 .250628E-09 .600472E-08 -.165144E-(9
- 170257E-08 .312056E-08 -.807286E-09 .504383E-07

MATRIX FOR SECTION: 1, BLADE: 7
.607422E-07 -.802202E-08 -.136835E-09 -.840365E-08
-.803070E-08 .247008E-07 .377322E-09 .546028E-08
-.693500E-10 .377721E-09 .578679E-0% .743851E-10
-.827150E-08 .5460G64E-08 .505670E-1C .476835E-07

MATRIX FOR SECTION: 2, BLADE; 7

.603513E-07 -.834859E-08 -.168020E-05 -.255583E-08
- 784810E-08 .245449E-07 ,337192E-09 .538241k-08
-.123595E-09 .262184E-)9 .564403E-08 -.122913E-09
-.848671E-08 .517938E-08 -.345758E-09 .470697E-07
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MATRIX FOR SECTION: 1, BLADE: 8

287997E-07 -.150000E-11 .563859E-11 -.935840E-11
-.259201E-11 .259144E-07 -.178833E-11 -248651E-12
.184126E-10 ~232749E-12 .619388E-08 -.486900E-10
A453763E-10 .968932E-12 -.228322E-10 .543169E-07

MATRIX FOR SECTION: 2, BLADE: 8

285857E-07 .166050E-09 .185933E-10 -.479692E-11
275293E-09 .259307E-07 .158014E-10 -,262454E-11
-.276093E-09 .804174E-12 .632200E-08 -.187553E-09
-.347824E-09 .253299E-10 .373140E-09 .538126E-07

To examine the accuracy of the resultant matrices, it is important to begin with the
isotropic blade. Examination of Blade 8 reveals that the diagonal tertns are all positive
and representative of the correct responses. Theoretically, the off-diagonal terms of this
matrix should be zero. Since the finite elemert method was used for analysis and numer-
ical methods are not exact, thcsg: terms will never quite be zero. The values of these
terms range from two to five orders of magnitude smaller than thc diagonal terms and
can be considered zero. The only term which is marginally acceptable is the a3 term
(Equation 6.1). The value is only one or two orders of magnitude smaller than the diago-
nal term in that column and may represent some unwanted coupling in the isotropic
model. This term represents an extensional-bending coupling caused by a moment about
the z-axis. This is probably due to the fact that the bending moment is applicd about the
usymmetric axis of the model and that the point of application is in error. Because of this
discrepancy in the isotropic case, the @43 term in each of the other blades must be con-
sidered to be slightly inaccurate. There are distinct coupling terms present in each of the
anisotropic blades. The value of a coupling term, say a3, of one laraination can be com-
pared to the same term of another anisotropic lamination to determine the impact that the

ply orientation angle has on the coupling effect. This information could be stored in a
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file which contained similar data for numerous blades and laminations and might be use-
ful for an aeroclastician who is attempting to construct a composite blade which exhibits
clastic coupling responses desirable for given flight conditions. It might even be possible
with enough research and data collection to construct a catalog of composite blades

which exhibit unique acroelastic properties.

After all of the calculations are completed, the response of B’, ¢’, ¢’ and 4" are

plotted with respect to the ply angle 8. The results are shown in Figures 6.1 through 6.8.

In the plot of B’ versus the ply angle, (Figure 6.1), the resuits are as expected. The
rate of twist of the blade (for a fixed torque) should be inversely proportional to the in-
plane shear modulus, 5;,, of the laminate. The value of the laminate in-plane shear
modulus increases from 0 = 0° to 9 = 45° where it reaches a maximum. As the ply angle
continues to increase to 6 = 9C°, the in-plane shear modulus decreases. If the values of
C—?,y for this model (See Table 5.4) are plotted with respect to the ply angle, the inverse of
Figure 6.1 is the result. Both of these plots are offset to the right so that the minimum
angle of twist and the maximum in-plane shear stress are located near 49°. This is due to
the geometry of the blade which employs a curved laminate and therefore the effect of
G,y is altered.

Figures 6.2, 6.3 and 6.4 demonstrate the effect of the ply angle on the curvature,
rotation and rate of displacement of the blade. These plots shouid follow the functional
dependence of the laminate E, and Ey on the ply angle. The results correlate closely
with the moduli from 0 =0° to 0 =45°. However, one would expect the curvature and
rotation to continus to increase as the the ply angle increases up to 6 =90°. This is the

expected behavior since the sirength in the longitudinal direction is about 77 times
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greater than the stre>gth in the transverse direction. The UZ and UY displacements were
examined for each blade and were determined t. be comect. The laminate properties
(Table 5.4) do not hehave as expected but have been verified by three laminate analysis
programs. It is also assumed that the geometry of the blade, modeled as a hollow unsym-
metric laminated beam, causes the deviation from the plot of E; and E, which actually

correspond to a fiat laminated plate.

The responses of f, ¢, ¥ and u are plotted along the blade length and are shown by

Figures 6.5 through 6.8. The results are as expected.

In Figure 6.5, which is the plot of the angle of twist along the blade length, it is
expected that the twist of Blade 4 (See Chapter 6 for blade designation and description)
would exhibit the minimum values for the anisotropic cases. It is also expected that
Blade 1 and Blade 7 would be similar to each other and reach the highest values “or twist.
This was tuc case in Figure 6.5. The isotropic blade (Blade 8) results are plotted on this
graph as a reference or base line case and are depicted by a straight line which reflects a
minimum value linear twist. Figures 6.5 through 6.8 also accurately reflect the increase
in twist, curvature, rotation and displacemeni aiong the biade span as the distance from
the constrained end increases. There do not appear to be any negative end effects and

one can assume that the data was taken at a sufficient distance from the end of the beam,

The nodal displacements and blade deformations provide valuable information in
determining the elastic coupling responses of the anisotropic blade mu.lels. They also
provide an acceptable vehicle for comparing the effects of ply orientation as a design
parameter. In reference to the blade displacements, two points need to be made, First,

the end caps were designed to be extremely stiff. To verify the accuracy of the force
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application on the end cap, two procedures were attempted. A bending moment of 1000
units was applied at one node ~.n the end cap and rhe displacements were recorded. The
bending moment was then distributed about each node on the outside edge of the erdcap
and the displacements were again recorded. The displacements were identical in both
cases and verified that the end cap was not deforming undesirably and that the moment
application was correct. The second point of interest is that the outside surface of tue
blade had a tendency to deform unfavorably under stress and as a result the displacement
data was only taken at the leading and trailing edges. To correct for this, the model needs
to be reinforced with ribs along the entire length of the blade. These ribs could be con-

structed in a similar fashion as the end caps.

Figure 6.9 represents a theoretical view of what might happen when a single force is
applied to an anisotropic blade. The actual displacements can be seen in Figures 6.10
through 6.41 which are located at the end of this chapter, As a point of reference, the
isotropic blade (Blade 8) needs to be examined. Figures 6.38 through 6.41 present a
visual representation of the blade response of an isotropic lamination sequence under tor-
sion, bending and extension. Figure 6.38 reveals that as a constant torque is applied at
the shear center, the entire blade twists around that point. When comparing that with an
anisotropic lay-up, Figure 6.18 for example, one can see that the blade twists about a dif-
ferent axis which is located toward the trailing edge and that there is some flapping or
bending about the y-avis. This is the coupling which is a result of the anisotropic lamina-
tion and which is predicted iu the bending-stiffness matrix, [D], o lamination theory. A
similar investigation of the application of an axial force along the neutral axis, (Figure
6.41), reveals tha as the isotropic blade is pulled, the result is extension in the x direction

and nothing else. When this is compared te the responst.  ~ an anisotropic blade under
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identical loading conditions, Figure 6.21 for example, one can see that in addition to

FIGURE 6.9. Elastic Bending-Torsion Coupling of Rotor Blade

extension, the blade underwent bendir.g about the y and z axes and twisting about the x-
axis. This can be predicted by the extensional-stiffness inatrix, [A], and the bending-
stiffness matrix {D]. Since the laminates used in this rescarch were symmetric (See page
2), the extensional-bending coupling matrix, [B], is zero and would not normally have
any effcct on the response of the model. However, since the model is not symmetric with

respect to the x—z plane, there are some miroy effects from this type of coupling. These
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can be seen in Figures 6.19 and 6.20. All of the blade deformations are depicted in Fig-
ures 5.10 through 6.41 and can be used to examine the varying effects of lamination

sequence on displacement and coupling.

The results provided by each of these media allow us to examune the effects of ply
orientation and to compute the couvpling terms of the accompanying stiffness matrices,

This work should lead to a much improved capcbility for evaluating blade properties for

use in rotorsystems.
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Chapter Seven

Summary and Concluding Remarks

The advent of composite material construction in helicopter rotor blade design has
opened new areas of research and development. In particular, the unique coupling pro-
perties afforded by anisotropic composites provide a potentially powerful new set of
design variables for designing aeroelastic stability. The development of shell elements
with anisotropic laminate capabilities which are incorporated into commercially avail-

able finite element packages makes this type of research possible.

Composites have better fatigue characteristics than metal and they permit the flexi-
bility of tailoring the structural properties. One drawback of composite materials is that
their structural characteristics, in particular the couplings of different bending modes, are
not very well understood by a typical design engineer. Due to the complex directional
nature of composite materials, the analysis of anisotropically laminated structures is
complicated by the introduction of these elastic couplings. This is especially true in
- dynamic behavior since the elastic couplings have such a significant influence on charac-
teristics like mode shape and frequency. Recent design practice has been to treat compo-
sites similarly to metals. This approach, however, does not permit the description of gen-

eral composite lay-ups and its accuracy is questionable in view of the following facts

[19):
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(a) The use of laminated composite materials for the blade structure results in
significant shearing and warping deformations. These effects are far more
pronounced for highly anisotropic composites than for metallic materials.

(b) The proper tailoring of composite lay-ups will result in elastic couplings, e.g.,
bending-twisting or extension-twisting couplings which are known to strongly
influence the dynamic behavior and stability of the blade. Such couplings are
not appropriately modeled with standard team theories.

{c) In specific applications, the blade planform becomes wider, resulting again in
increased shearing and warping deformations.

(d) Recent research shows that the torsional behavior, and the effects of pre-twist
of the blade are accurately predicted only if out-of-plane warping of the cross-
section is included.

In this research, the different stiffness coupling terms for a composite rotor blade
were identified. These included the terms caused by bending-torsion and extension-
torsion couplings of angle plies. It was shown that the ply lay-up and oricntation has a
substantial effect on the blade aeroelastic characieristics. It is concluded that the ply
orientation angle and the ply thickness are suitable parametric variables for future studies
aimed at assessing the influence of variations in structural properties which can in turn be

used in the prediction of natural frequencies and aeroelastic stability.

The complex structural behavior of a rotor blade was modeled accurately. The fol-
lowing features were included: thin-walled cross-sections, proper scaling and material
anisotropy. This resulted in an accurate modeling of the torsion, and coupled extension-
twist behavior. While the undeformed blade geometry was accurate, the deformed
geometry was somewhat deficient. The deformation was skewed at locations on the
blade surface. Tkis can be corrected by adding stiff ribs (similar to the end caps)
throughout the length of the structure. Despite the fact that the geometries presented in

this paper were rather simple, the formulaton is applicable to complicated geometries.
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Although we cannot increase the accuracy of predicied trequencies for the bending
modes, which are basically uncoupled, we can greatly improve the prediction of the fre-
quency of the torsional mode. This mode is elastically coupled and since there is an
absence of off-diagonal coupling terms in the formulation of the equivalent engineering
stiffnesses using beam theory, they must be predicted using lamination theory or deter-
mined experimentally.

In this research, the extension-twist terms were most pronounced. Potential applica-
tions of extension-twist coupling include the design of a tilt-rotor blade that would
change twist as a function of rotor speed. Such a blade would be extremely «1seful on an
aircraft such as the V-22 OSPREY. Besides the potentially positive aeroelastic benefits of
twist, there are other useful applications of elastic coupling. These include the reduction
or modification of structural vibration in rotor blade design. This is accomplished by

building, into the blades, a natural aeroelastic compliance for vibration reduction [20].

To apply this model toward further analysis of elastic coupiing, one would need a
three-dimensional, non-linear beam element which includes shear and warping effects as

well as a correct modeling of elastic couplings. This type of element is unavailable in

ANSYS® and one would rieed to use a program such as MSC/NASTRAN®.
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Appendix A

Laminate Analysis Program

PROGRAM COMMAT (INPUT,OUTPUT,TAPES=INPUT,TAPE6=OUTPUT)
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COMPOSITE MATERIALS
LAMINATE ANALYSIS PROGRAM

PATRICK GRAHAM FORRESTER
UNIVERSITY OF VIRGINIA 1989

THESIS RESEARCH
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THE PURPOSE OF THIS PROGRAM IS TO CALCUL ATE
THE LAMINATE PROPERTIES OF COMPOSITE MATERIAL
HELICOPTER BLADE MODELS GIVEN THE LAMINA
MATERIAL PROPERTIES OF GRAPHITE/EPOXY

90 o e e e e o e o 2 o ool s e e e e s e e e e e e e e e 3 ok e o o o abe e o e e e e ol e o e o e o

INTEGER IA MN IAINV IER

INTEGER NOMAT,ANGLE,PLIES LOAD,ILOAD,ITEMP,QUEST

REAL S11(5),512(9),513(9),522(9),523(9),833(9),544(9),555(9)

REAL E11(9).E22(9),E33(9),G12(9),G23(9),G31(9),566(9)

REAL NU12(9),NU23(9),NU13(9),(313(9),RTHETA(9)

DIMENSION D3(3,3),EPS3(3,9)

INTEGER THETA(9),ISYM

REAL Q11(9),Q12(9),Q22(9),Q66(9),QBAR11(9,9),QBAR12(9,9)

REAIL. QBAR22(9.9),QBAR16(9,9),QBAR26(9,9),QBARG66(9,9)

REAL EXX(9,9).EYY(9.9),EXY(9,9)NUXY(9,9),GXY(9,9)

REAL ETAXYX(9,9)ETAXYY(9,9),KAP(3),H

REAL NXNY,NXY MXMY MXY,DELTT, TEMP,TEMPN,TEMPM,ALAM(3)
DIMENSION EPS1T(9,3),EPS1B(9,3), XST(9),YST(9),SSS(9)

DIMENSION RMB(3),RNB(3),EPSB(3),EPSXB(9,3)

DIMENSION ALP1(9),ALP2(9),ALP3(9),ALPX(9,9),ALPY(9,9),ALPXY(9,9)
DIMENSION SIGXB(9,3),SIGXT(9,3),EPSXT(9,3),EPST(9,3),U(3,3)

REAL KAPT(3),KAPB(3)
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DIMENSION EPSTH(3),DEL(9,3) NXX(9,3)

REAL F1,F2,F6,F11,F12F22,F66,BETA1(9,3),BETA2(9,3)

DIMENSION EPST1(9,3),EPSTH1(9,2

DIMENSION RNT(3),RMT(3),SIG1T3,3),SIG1B(9,3)

REAL MIDEPX MIDEPY MIDEPXY..APX,KAPY KAPXY
DIMENSION X(6.,6),P(3,3),T(3,3),R(6,6),PN(3),PM(3)

REAL P1,C,S,TOL,WK1(12),WK2(6),51(6),52(3)

REAL ETABXYX,:TABXYY ETABXXY ETABYXY ,EBARX,EBARY
DIMENSION A(6,5,9),B(6,6,9),E(3,3,9,9),D(3.,3,9,9)

DIMENSION MATN(9),ANGN(9), THICK(10),Z(11),D4(3,3),A4(3.3),B4(3.3)
DIMENSION A1(3,3),B1(3,3),D1(3,3),A2(3,3),B2(3,3).D2(3,3),B5(3,3)
DIMENSION EPS(3),RN(3),RM(3),P1(3),P2(3),A3(3,3),B3(3.3)
DIMENSION SIG(3,9),EPS1(9,3),S1G1(9,5),S1G2(3,5).S1G3(3,9)
DIMENSION SIGX(9,3),S1GY(3,9),SIGXY(3,9),EPS2(3,9)

DIMENSION EPSX(9,3),EPSY(3,9),EPSX Y(3,9),AA(3,3),BB(3,3),DD(3,3)
DIMENSION ATEMP(6,6,9),CTEMP(3,3,9,9),T1(3,3,9),T2(3,3,9)

OPEN (UNIT=6,FILE="RESULT")

PI = 3.14159
STHICK = 0.0

WRITE(S,*) 'ENTER THE NUMBER OF DIFFERENT MATERIALS AND ANGLES’
WRITE(S,*) 'AND THE NUMBER OF PLIES AND LOADS IN LAMINATE’
READ (5,*) NOMAT,ANGLE,PLIES LOAD

WRITE(S,*) 'IS THIS A SYMETRIC LAMINATE? YES=0NO=1’
READ(S,*) ISYM

WRITE(S,*) 'IS THERE THERMAL LOADING? YES=0 NO=1"
READ(S,") ITEMP

WRITE(S,%) 'DO YOU KNOW NXX FOR FAILURE CRITERIA? YES=1 NO=0’
READ(S,*) QUEST

DO 2 I=1, NOMAT
WRITE(S,*) 'ENTER E11,E22 FOR MATERIAL NUMBER °,1
READ(,*) E11(1),E22(I)

WRITE(S,*) 'TENTER G12 FOR MATERIAL NUMBER ’ I
READ(5,*) G12(I)

WRITE(S,*) JENTER NU12,NU23 FOR MATERIAL NUMBER *, 1
READ(5,*) NU12(I),NU23(I)

WRITE(S,*) 'ENTER ALPHA1,ALPHA2 AND ALPHA3 FOR MATERIAL 1
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READ(S,*) ALP1(I),ALP2(D),ALP2(I)

WRITE(S,*) 'ENTER X SUB T, Y SUB T, S AND F12 FOR MATERIAL "I
READ(S,*) XST(I),YST(D,SSS(I) F12

F1=0.0
F2=00
F6=0.0
F11 =-1.0/(XST()**2)
F22 = -1,0/(YST(I)**2)
F66 = 1,0/(SSS(I)¥*2)
E33(I) = E22(D)
G13(D =G12(D)
G23(D = E22(1)/(2.0*(1.0 + NU23(1)))
NU13(@) = NU12(D

2 CONTINUE
DO 31=1,ANGLE
WRITE(S,*) "ENTER ANGLE NUMBER ', I
READ(S,*) THETA(I)
RTHETA() = PI/180.0 * THETA(])

3 CCONTT.VUE
DO 41=1,PLIES
V/RITE(S,*) "TENTER MATN,ANGN,THICK FOR PLY NUMBER "’ ,I
READ(S,*) MATN(D,ANGN(), THICK(T)

C

STHICK. = STHICK + THICK()

4 CONTINUE

C

DOST=1L0OAD
WRITE(5,*) 'DO YOU KNOW {N] AND [M]? YES=0 NO=I"
READ(,") ILOAD
IF JLOAD .EQ. 0) THEN
WRITE(S,*) 'TENTER NX, NY AND NXY FOR LOADING CONDITION .1
REATMS *) RN(1) RN(2) RN(3)
WRITE(S,*) '"ENTER MX, MY AND MXY FOR LOADING CONDITION ',I
READ(S,*) RM(1),RM(2),RM(3)
ELSE

WRITE(S,*) "'THAT MEANS YOU KNOW MIPLANE STRAINS AND CURVATURES’
WRITE(S,*) (ENTER EPSX, EPSY AND EPSXY FOR LOADING CONDITION °,I
READ(S,*) I'PS(1),EPS(2).EPS(3)
WRITE(S,*) 'ENTER KAPX, KAPY AND KAPXY FOR LOADING CONDITION ’,I
READ(S,*) KAP(1),KAP(2), KAP(3)
ENDIF
5 CONTINUE
C
IF ATEMP .EQ. 1) COTO 739
WRITE(S,*) "TENTER CHANGE IN TEMPERATURE’
READ(S,*) DELTT
739 CONTINUE

C
Cc
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DO 6 1= 1,NOMAT
S11Q) = 1.0/E11())

S12() = -NU12(I/E11(1)

$22(1) = 1.0/E22()
$33(1) = 1.0/E33(D)
S44(D) = 1.0/G23(D

513(1) = -NU13(QD)/E11(D)
$23(1) = -NU23(M/E11(})

S55(I) = 1.0/G13(])
S66(1) = 1.0/G12(I)

DO1K=16
DO1J=1,6
AKID=0C

1 CONTINUE

A(i.1,D) = S11(D)
A(12,) = S12(D)
A(1,3.]) = S13(T)
A1) = S12()
AQC2.)) = S22(D)
AQ3.) = S23(D)
AQ3,1,D) = S13(D)
A(3.2.D) = S23(1)
A(3.3.1) = $33(D)
A(4.4.T) = S44(T)
A(5.5.1) = S55(I)
A(6,6.]) = S66(1)

DO21K=1,6
DO21J=1,6

DO 1000K = 1,6
DO 1000J = 1,6
X(K,J) = 0.0

1000 CONTINUE

X(1,1) = S11(I)
X(1.2) = S12(I)
X(1,3) = S13(I)
X(2,1) = S12(1)
X(2.2) = S22(D)
X(2.3) = S23(I)

21 ATEMP(K,J.D) = A(K,J,I)

are

........

-------
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X(3,1) = S13(D
X(3,2) = 523(D
X(3,3) = S33()
X(4,4) = S44(D
X(5,5) = S55(I)
X(6,6) = S66(1)

23

=6
6
6
TOL =0.0

ZzZZ
o

CALL LGINF (X,JAMN,TOL,R,JAINV,S1,WK1,[ER)

XY1=R(1,1)
XY2=R(12)
XY3=R(1,3)
XY4=RZ,1)
XY5=R(2,2)
XY6=R{23)
XY7=R@3E,1)
XY8=R(3.2)
XY9=R(3,3)
XY10 = R(4,4)
XY11=R(,5)
XY12 = R(6.6)
XY13=00

DO 1001 K=1,6
DO 1001J=1,6
B(K.J,) = 0.0

1001 CONTINUE
B(1,1,)) = XY1
B(1.2,]) = XY2
B(1,3.) = XY3
B(2,1,1) = XY4
B(2.2]) = XY5
B(2,3,]) = XY6
B(3,1,1) = XY7
B(3,2.]) = XY8
B(3,3.1) = XY9
B(4,4]) = XY10
B(5,5.]) = XY11
B(6,6.]) = XY12

Q11(I) = S22(DH/(S11(I)*S22(D)) - (S12(D)*S12(D))

115



116

QI2(D = -S12(BA(S11(@)*S22Q)) - (S12A*S12(D))
Q22(D = SIS 11(D)*S22(D) - (S12(M)*S12(T)))
Q66(D) = 1.0/S66(T)

DO 68 K = 1,ANGLE

g 0an

C = COS(RTHETA(K))
S = SINRTHETA(K))

@]

QBAR11(IK) = QLIIMC*C*C*C) + 2.0%{Q12(D) +
A 2.0%Q65(D)*(S*S)*{C*C) + Q22(D)*(S*S*S*S)

QBARI12(1,K) = (Qi 1(5) + Q22(I) - 4.0%Q66(I)*(S*S)*(C*C) +

A QI2(D*((S*S*S*S) + (C*C*C*C))

QBAR2X(I,K) = Q1 1(I)*(S*3*S*S) + 2.0%(Q12(I) + 2.0*QG6(I))*(S*S)
A *C*C) + Q2*(C**C*C)

QBARI6(LK) = (Q11(I) - Q12(I) - 2.0*Q66(I))* S*(C*C*C) + (Q12(I) -
A Q22(D) + 2.0*Q66(1)) *(S*S*S)*C

QBAR26(1K) = (Q11(I) - Q12(I) - 2.0*Q66(D)*(S*S*S)*C + (Q12(I) -
A Q22(T) + 2.0*Q66(T)) *S*(C*C*C)

QRARSGS(K) = (Q11(D) + Q22(1) - 2.0%Q12(I) - 2.0%QEEIM)*(S*S)

A *(C*C) + Q66(D*((S*S*S*S) + (C*C*C*C)) -

E(1,1,LK) = QBAR11(IK)
E(12,LK) = QBARI2(LK)
E(1,3,,K) = QBARI6(LK)
E(2,1,LK) = QBARI2(IK)
E(2,2,L.K) = QBAR22(IK)
E(2,3.L.K) = QBAR26(I.K)
E(3,1,LK) = QBAR16(LK)
E(3,2,1,K) = QBAR26(1K)
E(3,3,1K) = QBARG6(LK)

DO31M=13
DO31J=13
31 CTEMP(M,J,LLK) = EIM,J,LK)

C
C e CALCULATE THE REDUCED COMPLIANCE MATRIX........
C

P(1,1) = QBARI11(1.K)

P(1,2) = QBAR12(1,K)

P(1,3) = QBAR16(1,K)

P(2,1) = QBAR12(1,K)

P(2,2) = QBAR22(1.K)

P(2,3) = QBAR26(1,K)

P(3,1) = QBARI16(1,K)

P(3,2) = QBAR26(LK)
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P(3,3) = QBAFR.66(1.K)

>
il

3

%

=3
M=3
N=3
TOL =0.0

CALL LGINF(P,JAMN,TOL,T JAINV,S2,WK2,IER)

XYZ1 =T(1,1)
XY72=T(1,2)
XYZ3 =T(1,3)
XYZA=T(2,1)
XYZ5=T{2,2)

- XYZ6 =T(2,3)

XYZ7:=T(3,1)
XYZ8 =T(3,2)
XYZ9=T(3,3)

D(1,1,LK) = XY7:
D(1.2,1,X) = XYZ2
D(1,3,LK) = XYZ3
D(2,1,LK) = XYZ4
D(2.2,LK)= XYZS5
D(2.3,L¥.) = XYZ6
D(3,),.,K) = XYZ7
D(3.2,LK) = XYZ8
D(3.3,LK) = XYZ9

EXX(LK) = 1.0/(((1.O/E1 1(I)*(C*C*C*C)) + £(1.0/G12(D) -

A (20*NUI2()/E11(D))

B *(S*S)*(C*C) + ((1.0/E22(D)*(S*S*S5*S)))

EYY(LK) = 1LO/(((1.O/E1 1(D)/*(S*S*S*S)) + ((1.0/G12(D) -

A QOMUL2(YELD))

B *(S*S)*(C*C) + (1.0/E22(D)*(C*C*C*C)))

NUXY(1,K) = EXX(LK)Y*(NUI2T)/E11(D)*((S*S*S*S) + (C*C*C*C)) -
A (LOEN®D) +

B (LOE22(D) - (1.0/G12(I)*(S*S)*(C*C))

GXY(QK) = 1LOAQ.0*(2.0/E11(D) + (2.0/E22(D) +

A (A.0*NUI12()/E1i(D) -

B (1.O/G12()))*((S*S)*(C*C)) + ((LO/G12(D)*((S*S*S*S) +

C (C*C*C*Q)))

ETAXYX(,K) = EXX(LK)*((2.0/E1 1(I)) + (2.0*NU12(I/E1 1(D)) -
A (LO/G12()))*S*C*C*C) -

B ((2.0/F22(D)) + (2.0*NUL2(I/E11(D) - (1.0/G12(I)))*S*$*S)*C)
ETAXY (LK) = EYY(LK)*((2.0/E11(I)) + (2.0-NU12(I/E11(D)) -
A (LO/G12(D))*(S*S*S)*C




B - ((2.0/E22(D) + (2.0*NU12(D/E11(D) - (1.0/G12(M)))*S*(C*C*C))
68 CONTINUE
C
6 CONTINUE
C
C ...CALCULATE THE [A], {B], AND [D] MATRICES.....
DO691I=1.3
DO69J=1,3
AlI,DH=00
B1(1,))=0.0
DILD) =00
69 CONTINUE
C
Z(1)=- STHICK2.0
C
DO701=1,3
DO79)=13
DO 72K = 1PLIES
M =MATN(K)
N = ANGN(K)
Z(K + 1) = Z(K) + THICK(K)

AT = EQIMN)*(Z(K+1) - Z(K))
BT = E(LILMN)*(Z(K+1)**2 - Z(K)**2)*(1.0/2.0)
DT = EQJMN)*(Z(K+1)**3 - Z(K)**3)*(1.0/3.0)

AN =AIQD + AT
B1(L))=BI1()) + BT
DIA)) =DI1{) + DT
72 CONTINUE
79 CONTINUE
70 CONTINUE
C
DO9%9I=13
DOYXPI=1,3
DD(,J) = D1(1.))
AA(I-J) = AI(LD
BB(1,J) = B1(LJ)
909 CONTINUE
C
DO 9331=1,ANGLE
T1(1,1,0) = COS(RTHETA(I))**2
T1(1,2,I) = SIN(RTHETA(D))**2
T1(1,3,I) = COS(RTHETA(I))*SIN(RTHETA(I))
T12,1,h) = T1(1,2,0)
T1(2,2,H=TIi(1,1,)
T1(2.3,D = -T1(1,3,])
T1(3,;,) =T1(1,3,D*2.0
T1(3,2,) = -T1(3,1,))
T1(3,3,I) = COS(RTHETA(I))**2 - SINRTHETA(I))**2
" 933 CONTINUE
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DO 332 J = 1,NOMAT
DO 3331 =1,ANGLE
ALPX(1,D) = T1(1,1,Iy*ALP1(J) + T1(1,2,[;*ALP2(J)
ALPY().I)=T1(2,1,D)*ALPI(J) + T1(2,2,)*ALP2(J)
ALPXY(J,D) = T1(3,1.)*ALP1(J) + T1(3,2,)*ALP2(D)
333 CONTINUE
DO 4000 1=14
WRITE (6,555) ALPX(1,D)
WRITE (6,555) ALPY(1,D)
WRITE (6,555) ALPXY(1,I)
555 FORMAT (5X,4E11.5)
4000 CONTINUE
332 CONTINUE
C
DO 334 L = 1,PLIES
J=MATN()
K=ANGN(L)
EPST(L,1) = ALPX(J,K)*DELTT
EPST{L,2) = ALPY(J,K)*DELTT
EPST(L,3) = ALPXY(J K)*DELTT
334 CONTINUE
DO %000 I=1, PLIES
9000 WRITE (6,55) EPST(1,1),EPST(1,2),EPST({,3)
Z(1) = -STH'CK.2.0
C
DO 335L =1,PLIES
J=MATN(L)
K= ANGN()
DO33€¢I=1,3
TEMF - : E(I,1,J,K)*EPST(L,1)

A +EQ2 TXEPST( 2) + EQ,3,] K)*EPST(L 1)
TEMPN = TEMP*(Z(L+1) - Z(L))
TEMPM = TEMP*(Z(L+1)**2-Z(L)**2)/2.0
RNT(I) = RNT(I) + TEMPN
RMT() = RMT(I) + TEMPM

336 CONTINUE

335 CONTINUE

CALL INVRS(A1,A2)

....CALCULATE THE LAMINATE COEFFICIENT OF THERMAL EXPANSION.....

nnann

IF (SYM .EQ. 1) GO TO 921
DO4441=13
ALAM() = (A2(, 1)*RNT(1) + A2(I,2)*RNT(2) + A2(,3)*RNT(3))
A *(1.0/DELTT)
444 CONTINUE
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921 CONTINUE
C
C
C ..INVERT THE Al MATRIX TO USE FOR LAMINATE ENGINEERING PARAMETERS..

CALL INVRS(A1,A2)

C

C .

C ...CALCULATE THE LAMINATE ENGINEERING PARAMETERS......
C

IF (ISYM .EQ. 1) GO TO 200
EBARX = 1.0/(STHICK * A2(1,1))
EBARY = 1.0/(STHICK * A2(2,2))
GBARXY = 1.0/(STHICK * A2(3,3))
NUBARXY = -A2(1,2)/A2(1,1)
ETABXYX = A2(1,3)/A2(1,1)
ETABXYY = A2(2,3)/A2(2,2)
ETABXXY = A2(1,3)//A2(3,3)
ETABYXY = A2(2,3)/A2(3.3)

200 CONTINUE

IF ILOAD .EQ. 0) GO TO 600

C
C .. COMPUTE [M} AND [IN] GIVEN MIDPLANE STRAINS AND CURVATURES....
C

CALL MPLY(A1,EPS,P1,3,3,1)
CALL MPLY(B1,KAP,P2,3,3,1)
CALL PLUS(P1,P2,PN,3,1)
CALL MPLY(B1,EPSP1,3,3,1)
CALL MPLY{(D1,KAPP2,3,3,1)
CALL PLUS(P1,PZPM,3,1)
GO TO 300

600 CONTINUE

C

C ..COMPUTE THE MIDPLANE STRAINS AND CURVATURES GIVEN [M] AND [N]....

C
IF ISYM .EQ.0) THEN
CALL INVRS(A1,A3)

CALL INVRS(D1,D2)
DO 4001=13
DC401J=1,3
B3(1J)=0
B4(L)) =0
401 CONTINUE
400 CONTINUE
ELSE
CALL INVRS(A1,A4)
CALL MPLY(A4,B1,82,3,3,3)



DO4021=1,3
DO403J=1,3
B2(L.7) = -B2(L.J)

403 CONTINUE
402 CONTINUE

C

CALL MPLY(B1,A4,B5,3,3,3)
CALL MPLY(B1,B2,D3,3,3,3)
CALL PLUS(D1,D3,D4,3,2)
CALL INVRS(D4,D2)

CALL MPLY(B2,D2,B3,3,3,3)
CALL MPLY(B3,B5,D3,3,3,3)
CALL MINUS(A4,D3,A3,3,3)
CALL MPLY(D2,B5,B4,3,3,3)
DO4041=13

DO 4057 =13

B4(1,)) = -B4(L,))

405 CONTINUE
404 CONTINUE

C

anan

nann

c

ENDIF

CALL MPLY(A3,RN,P1,3,3,1)
CALL MPLY(B3,RM,P2,3,3,1)
CALL PLUS(P1,P2,EPS,3,1)
CALL MPLY(B4,RN,P1,3,3,1)
CALL MPLY(D2,RM,P2,3,3,1)
CALL PLUS(P1,P2,KAP,3,1)
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...CALCULATE MIDPLANE STRAINS AND CURVATURES WITH THERMAL LOADS...

CALL MPLY(A2,RNT,P1,3,3,1)
CALL MPLY(B3,RMT,P2,3,3,1)
CALL PLUS(P1,P2,EPSTH,3,1)

CALL MPLY(B4.RNT.P1,3,3,1)

CALL MPLY(D2,RMT,P2,3,3,1)

CALL PLUS(P1,P2,KAPT,3,1)

.CALCULATE MIDPLANE STRAINS AND CURVATURES WITH

MECHANICAL AND THERMAL LOADING

DO 4081=1,3
RNB(I) = RN(I) + RNT(I)
RMB() = RM(I) + RMT(I)

408 CONTINUE

CALL MPLY(A2,RNB,P1,3,3,1)
CALL MPLY(B3,RMB,P2,3,3,1)

CALL PLUS(P1,P2,EPSB,3,1)

CALL MPLY(B4,RNB,P1,3,3,1)
CALL MPLY(D2,RMB,P2,3,3,1)

CALL PLUS(P1,P2,KAPB,3,1)

oooooo
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9]

300 CONTINUE
....CALCULATE THE STRESSES IN EACH PLY IN THE X-Y DIRECTION....

ann

DO 9G0 L= 1,PLIES
DOSOl J=1,3
H = (ZL+1)-Z(1))2.0 + Z(L)
WRITE (6,55) H
EPSX(L,Y) = EPS(J) + E*KAP(J)
EPSXT(L,J} = EPSTH(J) + H*KAPT())
EPSXB(L.J) = EPSB(J) + H*KAPB(J)
EPSTI1(L,J) = EP,XTL,J) - EPST(L,J)
EPSTHI(L,J) = 3PSXB(L,J) - EPST(L.J)
901 CONTINUE
900 CONTINUE
DO 9001 I=1,PLIES
WRITE (6.55) EPSXT(1,1),EPSXT{1,2),EFSXT(,3)
9001 ONTINUE
DO 9002 I =1,PLIES
WRITE (6,55) EPST1(1,1),EPST1(1,2),EPST1(1,3)
9002, CONTINUE
WRITE (6.55) RNT(1),RNT(2),RNT(3)
WRITE (6,55) EPSTH/1),EPSTH(2),EPSTH(3)
WRITE /6,55) KAPT(1),KAPT(2),KAPT(3)

DO 701 I = i,PLIES

K = ANGN()

J = MATN(D)

DO7C3L =13

SIGX(,L) = EQL.1LK)*EPSX(I,!) + E(L.2.J K}*EPSX(I,2) +

A E(L3JK)*EPSX(,3)

SIGXT(,L) = 3(L,1,J,K)*EPST1(1,1) + E(L,2,J K)*EPST1(L.2) +

A E(L,3,},K)*EPSTI1(1,3)

SIGXB(I,L) = E(L.,1,J,K)*EPSTH1(I,1} + E(L,*.J,K)*EPSTH1(I,2) +

A E(L,3,J.K)*EPSTHI(I,3)

703 CONTINUE
701 CONTINUE

C
C ...CALCULATE THE §1 RESSES IN THE 1.2 DIRECTION......
C

DO 932 1=1ANGLE

T1(1,1,]) = COS(RTHETA(I))**2

11(1,2,]) = SINNRTHETA(D)**2

T1(1,3,I; = COSRTHETA(I))*SIN(RTHETA ()

T1(2,1,) = T1(1,2,])

T1(2,2,1) = T1{1,1,5)

T1(2,3,1) = -T1(1,3,D)

T1(3,1,1) = -T1(1,3.)*2.0

T1(3.2.) = -T1(3,1,1)

T1(3,3,1) = COS(RTHETA(I))**2 - SIN(RTHETA(I))**2




932 CONTINUE
C
DO 963 L = 1,PLIES
K = ANGN(L)
DO 964 1=1,3
EPS1(L.I) = T1(I,1,K)*EPSX(L,1) + T1(1,2,K)*EPSX(L,2)
A +T1(1,3.K)*EPSX(L,3)
EPSIT(L,]) = T1¢1,1, K)*EPSXT(L,1} + T1(1.2,K)*EPSXT(L,2)
A +T1(1,3,K)*EPSXT(L,3)
EPS1B(L,J) = T1(I,1,K)*EPSXB(L,1) + T1(L2,K)*EPSXB(L,2)
A +T1(1,3,K)*EPSXB(L,3)
964 CONTINUE
963 CONTINUE
C
DO 705 1= 1,PLIES
K = MATN(D)
SIGI(,1) = Q11(K)*EPS1(L1) + QI2(K)*EPS1(1,2)
SIG1(1,2) = Q12(K)*EPS1(1,1) + Q22(K)*EPS1(1.2)
SIG1(1,3) = Q66(K)*CPS1(1,3)
SIGIT(,1) = Q1 1(X)*EPSIT(,1) + Q12(K)*EPS1T(.2)
SIGIT(2) = Q12(K)*EPSIT(,1) + Q22(K)*EPSIT(,2)

*****

SIG1B(,1) = O11(K,*EPS1B(},1) + Q12(K)*EPS1B(1,2)
SIG1B(1,2) = Q12(K)*EPS1B(1,1) + Q22(K)*EPS1B(1,2)
SIG1B(,3) = Q66(K)*ZPS1B(1,3)

705 CONTINUE

PRINT *, "'THIS IS A LAMINATE COMPOSITE MATERIAL PROGRAM’
PRINT *,”’
PRINT *,"°’
PRINT *,*’
PRINT *, 'THERE IS ', NOMAT,’ TYPE OF MATERIAL’
PRINT *,"’
PRINT *, 'THERE ARE ',ANGLE,’ DIFFERENT ANGLES IN THIS LAMINATE’
PRINT %, °’
DO 2101=1,ANGLE
PRINT *,*°’
PRINT *, 'ROTATION ',1," EQUALS °,THETA(I)," DEGREES'
210 CONTINUE
PRINT *, '’
PRINT *, "'
IF AITEMP .EQ. 1) GOTO 111!
PRINT *, 'THERE ARE THERMAL EFFECTS IN THIS LAMINATE'
PKINT *,**
PRINT *, "’
1171 CONTINUE
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DO 201 I = 1,NOMAT
PRINT *, 'THE ENGINEERING PARAMETERS FOR MATERIAL ',I,’ ARE:’
PRINT *, "’
PRINT* ' Ell E2 GI2 NUI2’
PRINT *,**
WRITE (6,52) E11(I)E22(D,G12(1),NU12()

52 FORMAT (3E11.5,1F5.2)

201 CONTINUE
PRINT *,**
PRINT *,*°
DO 2021 = 1,NOMAT
PRINT *, '’
PRINT *, 'ORTHOTROPIC COMPLIANCE MATRIX FOR MATERIAL * I
PRINT *, '’
DO10J=16

10 WRITE (6,50) (A(.K,I), K = 1,6)

50 FORMAT (5X, 6E11.5)

PRINT *, ' *
202 CONTINUE
PRINT *,**
DO 2021 = 1,NOMAT
PRINT *, '’
PRINT *, "ORTHOTROPIC STIFFNESS MATRIX FOR MATERIAL *,I
PRINT *,**
DO11J=16
11 WRITE (6,50) (B(I &,I), K = 1,6)
PRINT *, '’
203 CONTINUE
PRINT *, '’

DO 204 1=1NOMAT
DO 205 K =1,ANGLE
PRINT *, "’
PRINT *, "'THE REDUCED STIFFNESS MATRIX FOR MATERIAL ', 1
FRINT *, 'AND ROTATION ', K, "i3:*
PRINT *, '’
DO12J=1,3

12 WRITE(6,51) (E(J, M,{,K), M=1,3)

51 FORMAT (5X,3E11.5)
PRINT *, '’

205 CONTINUE

204 CONTINUE
PRINT *, "’

C

DO 206 I=1NOMAT
DO 207 K = 1,ANGLE
PRINT *, '
PRINT *, "'THE REDUCED COMFLIANCE MATRIX FOR MATERIAL °, I
PRINT *, 'TANDROTATION ', K, ' IS’
PRINT *, '
DO13)=13

13 WRITE(6,51) (D(J,M,LK), M = 1,3)
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PRINT *, "’

207 CONTINUE

206 CONTINUE
PRINT *, "’
PRINT ¥, '’

C

DO 208 1 = 1,NOMAT
DO 209 K = 1,ANGLE
PRINT *, '’
PRINT *, 'THE LAMINA ENGINEERING PARAMETERS FOR MATERIAL * I
PRINT *, *AND ROTATION " K,’ ARE:’
PRINT *,*°
PRINT* ' EXX EYY NUXY GXY ETAXYX ETAXYY’
PRINT *, '’
WRITE(6,53) EXX.(LK).EYY(L,K) NUXY(1,K),GXY(1,K) ETAXYX(,K),
A ETAXYY(LK)

53 FORMAT (2E11.5,F5.2,E11.5,2F6.3)
PRINT %, '’

209 CONTINUE

208 CONTINUE
PRINT *,**
IF (ISYM .EQ. 1) GO TO 800
PRINT %, "’
PRINT *, 'THE LAMINATE ENGINEERING PARAMETERS ARE:’
PRINT *, '’
PRINT *, 'EBARX EBARY GBARXY NUBARXY ETABXYX ETABXYY
AETABXXY ETABYXY’
PRINT *, '’
WRITE(6,54) EBARX,EBARY.GBARXY NUBARXY,ETABXYX,ETABXYY ETABXXY,
A ETABYXY

54 FORMAT (3E9.3,F5.2,4E10.4)
PRINT *, "’
GO TO 801

C

800 CONTINUE
PRINT *, 'THERE ARE NO LAMINATE ENGINEERING PAKAMETERS’
PRINT *,*’

801 CONTINUE
PRINT *, "'THE LAMINATE COEFFICIENTS OF THERMAL EXPANSION ARE: ’
PRINT *, '’
DOB881=1,3
WRITE (6,58) ALAM(I)

58 FORMAT (5X,3E11.5)

88 CON fINUE
PRINT *, '’
PRINT *, "’
PRINT *, 'THE [A] MATRIX FOR THE LAMINATE IS’
PRINT *,
DO 211 i=1,3

211 WRITE (6,51) (AA(LY), J=1,3)
PRINT *, "
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PRINT *,”’
PRINT ¥, 'THE [B] MATRIX FOR THE LAMINATE IS’
PRINT *, "’
DO2121=13
212 WRITE (6,51) BB(.J), T=1,3)
PRINT #,*°’
PRINT *, 'THE [D] MATRIX FOR THE LAMINATE IS’
PRINT *,°°’
DO 2131=1.3
213 WRITE (6,51) (DD, J=1,3)
PRINT *, "’
PRINT #,*°

PRINT *, 'THE MECHANICAL STRESSES IN THE X-Y DIRECTION ARE’
PRINT *, '’
DO 214 1=1,PLIES
PRINT *, 'INPLY "I,
WRITE (6 53) (SIGX(, J), J=1,3)
214 CONTINUE
PRINT *,*°
PRINT "', "THE THERMAL STRESSES IN THE X-Y DIRECTION ARE’
PRINT *, "’
DO 218 1 = 1,PLIES

’ vaoa
PRINT = 'INPLY "4,

WRITE (6,55) (SIGXT(,), J=1,3)
218 CONTINUE
PRINT *,*°*
PRINT *, 'THE THERMAL AND MECHANICAL STRESSES '
PRINT *,* IN THE X-Y DIRECTION'
PRINT *,*°
DO 2191=1,PLIES
PRINT *,'INPLY "1,
WRITE (6,55) (SIGXB(1,J), J=1,3)
219 CONTINUE
PRINT *, "'
55 FORMAT (10X,3E11.5)
PRINT *,*°
PRINT *, "’
PRINT *, "THE MECHANICAL STRESSES IN THE 1-2 DIRECTION ARE’
PRINT *.*°
DO 215 I=1,PLIES
PRINT *,'INPLY 'I,"’
WRITE (6,55) (S1G1(1,3),J=1,3)
215 CONTINUVE
PRINT ¥, "’
PRINT * 'THE THERMAL STRESSES IN THE 1-2 DiRECTION ARE’
PRINT "' v
DO 220 I = 1,PLIES
FRINT *, 'INPLY "I,
WRITE (6,55) (SIG1T(1,J),J=1,3)
220 CONTINUE
PRINT *, "’
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PRINT *, 'THE THERMAL AND MECHANICAL STRESSES '
PRINT *,* IN THE 1-2 DIRECTION '
PRINT *,'’
DO 2211=1PLIES
PRINT *, 'INPLY ',I,">’
WRITE (6,55) (SIG1B(,)),5=1,3)
221 CONTINUE
PRINT *,°*
PRINT *,'°
IF QLOAD .EQ. 0) GO TO 775
PRINT *,*°*
PRINT *, 'THE RESULTANT FORCES AND MOMENTS ARE’
PRINT *,**
PRINT*,’ [N] [M]
DO2161=1,3
216 WRITE (6,57) PN(I).PM(I)
57 FORMAT (F7.2,5X,F7.2)
PRINT *,"°*
GO TO 776
775 CONTINUE
PRINT *, '’
PRINT *, 'THE RESULTANT MIDIPLANE STRAINS AND CURVATURES ARE’
PRINT %, "
PRINT *, 'STRAINS CURVATURES’
PRINT *, '’
D0O2171=1,3
217 WRITE (6,56) EPS(I),KAP(I)
56 FORMAT (E11.5,5X,E11.5)
776 CONTINUE
C
PRINT *, *°
PRINT *, "'
PRINT *, "THE RESULTS OF THE MAX STRESS FAILURE CRITERION’
PRINT *, *° —
IF (QUEST .EQ. 1) GO TO 2000 o
DO 2001 1=1, PLIES )
PRINT *, "THE FORCE RESULTANT TO PRODUCE FIRST PLY FAIL’
PRINT *,"°*
PRINT *, 'FORPLY ", 1,";’
2001 WRITE (6,55) (NXX(1,J), J=1,3)
GO TO 2002
2000 CONTINUE S
PRINT *, "THE CHANGE IN TEMPERATURE TO PRODUCE .
A FIRST PLY FAILURE IS’
PRINT *, '
DO 2003 1= 1,PLIES
PRINT *, "FORPLY ',1,":’
2003 WRITE (6,55) (DEL(LJ), J=1,3)
2002 CON7INUE
PRINT **
FRINT *,*°
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WRITE (6,55) EPST1(1,1),EPSTH(1),KAPT(1)
WRITE (6,55) EPSXT(1,1),EFST(1,1),ALPX(1,1)
WRITE (6,55) T2(1,2,1),ALP2(1),DELTT
WRITE (6,55) RNT(1),RMT(1), TEMPN
PRINT *,*°*
DO 30001=1,PLIES
WRITE (6,55) (ALPX(1,J),J=1,3)
WRITE (6,55) (EPST(1,J).J=1.3)
WRITE (6,55) (ALPY(L)),J=1,3)

3000 CONTINUE
PRINT *,*°*

C
STOP
END

C*************k‘ e 2ok ae o b o ae o s o o o o e e s e S e e e 350 o o o e e e e e e afe e o s e o ol o o e e o o o

SUBROUTINE INVRS(U,V)

DIMENSION U(3,3), A(3,3), V(3,3)
DET1 = U(2,2)*U(3,3)-U(2,3)*U(3,2)

DET2 = UQ,1)*U(2,2)-U2,2)*U(3,1)

DET3 = U(2,1)*U(5,2)-U(2,2)*U(3,1;
DET = U(1,1)*DET1-U(1,2)*DET2+U(1,3)*DET3

A(L1) = U(2,2)*U(3,3)-U(2,3)*U(3,2)

A(1,2) = (U(1,2*U(3,3)-U(1,3)*U(3.2))*(-1.0)
A(1,3) = U(1,2)*(2,3)-U(1,3y*U(2,2)

AQ2,1) = (U(2,1)*U(3,3)-U2,3)*UG.1))*(-1.0)
AQ22) = U(1,1)*U(3,3)-U(1,3)*U(3,1)

A(2,3) = (U(1,1)*U(2,3)-U(1,3)*U(2.1))*(-1.0)
AQ3,1) = U(2,1)*U(3.2)-U(2,2)*U(3,1}

AQ3.2) = (U(1,1)*U@ 2)-U(1,2)*U(3,1))*(-1.0)
A(3.3) = U(1,1)*U(2,2)-U(1,2)*U(2,1)

D020,1=13
D010, J=13
vVa.J) = AL)/DET
10 CONTINUE
20 CONTINUE
RETURN
END
C
Ot ook ol oo o o ok ool sl oo oo o o ook ool o
C
SUBROUTINE MPLY(U,V, T M,K,N)
C

DIMENSION UM, K),V(K,N}, T(M,N)
DO 20, I=1M
DO26, J=1,N




TAN=0.0

DO20,L.=1K

T1 = ULL)*V(L,])

TAH = TAI) + Tl
20 CONTINUE

RETURN

END

gmuuuMu*u*u*w*uuu*uuuuuunuuunnuuunuuu
C
SUBROUTINE PLUS(U,V,T.K,L.)
C
DIMENSION U(K,L),V(K,L),T(X,1.)
DOS5, I =1K
DOS, 1 =1L
TED =0.0
5 CONTINUE
DO10, I =1K
DO10,J =1,L
TA) =UCD) + VLD
10 CONTINUE
RETURN
END
C
CctokdkdeokooRokob ok el ol o ol el e ooh S ok ol oo o o e ol e e e oo
C
SUBROUTINE MINUS(U,V,TK,L)
C
DIMENSION U(X,L),V(K,L),T(K,L)
DOS, I =1K
DOS I =1L
TN =0.0
5 CONTINUE
DO 10,I=1K
DO10,J=1,L
T(1.)) =U1J) - V(L))
10 CONTINUE
RETURN

i

END
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Appendix B

Session File

B.1LogIn

>PATRAN2
>4107

>GO

>1

B.2 Mode! Generation

>1

>1

>GR,1
>GR,8,TR,0/9/0
>VIEW

>1

>30,30,30
>GR,4,,0/3/0
>(GR,2,,0,.6..8
>GR,3,,0,1.1,1.3
>GR,5,0,1.6,1.6
>GR,6,,0,2.1,1.8
>GR,7,,0,4,1.9
>GR,9,.0,6.6,1.1
>LI,1,FIT, 1/2/3/5/6/4
>L1,2,TR,80,1
>LI1,3,FIT,4/7/9/8
>LI1,4,TR,80,3
>PA,12L,,12
>PA22L,34
>PA3MILZ,1
>PA4MIZ,2
>SET,LABE,OFF
>END

B.3 Node Generation

>2

>1

>1
>SET,CPLOT,ON
>GF,PA1,4/25
>GF,PAZ,4/25



>GFPA3,25/4
>GF,PA4,25/4

B.4 Material Property Definition

»PMAT,10,0RT,56.3E6,2(1.1E6),.41,.45,.00801,,2.2E6,
».5E6,4.2E6,.5E-6,2(6.5E-6)
»>PMAT.30,IS0,.67ES6,,.36,,25E-6
»DATA,15,.6,4,1,1,2,2,1

>PMAT,50,HAL,D15,1030

>PMAT, 100/107,1LAMS 4(.015),0/30/15/90,4(50)
>END

B.5 Element Mesh Generation

>2

>1
>CF,PA1T4,TR1/3/53,T1
>END

B.6 Equivalencing

L QT MY AT AT
g Dx,urwx.Orr

>3
>N
>2
>1
>N
END

B.7 Force and Constraint Application

>SET PH1,0FF

>4

>1

>DF PA1,FORCE,100,1,ED2
>DF,PA2,FORCE,100,1, ED2
>DF,PA3,FORCE,100,1,ED1
>DF,PA4,FCRCE,100,1,ED1
>DF.PA1,D,/00///,1, N4/100
>END

B.8 Modei Optimization

>7
>5
>3
>2
>END

B.9 Material Property Assignment

>5
>1
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>PF,PA1T4,TR1I/3/53,1,106
>END

B.10 ANSYS Interface

>8
>5
>3
>1
>1
>?
>BLADE1
>Y
>Y
>2
>2
>5
>6
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Appendix C

Equation Solution Program

PROGRAM CALC
Ao ol e el ok ekl ko ok R Rk o sl okl
*
* PROGRAM CALC
*
* PATRICK GRAHAM FORRESTER
* UNIVERSITY OF VIRGINIA 1989
* THESIS RESEARCH
-

e b afe s o o b ofs 2 e s e o e ae e o e afe e 2 o o de e afe 2 ae o e e afe S ale i st o e 2 o o ool ol o e ol e e e ke

THIS PROGRAM IS DESIGNED TO READ THE DISPLACEMENT INFORMATION
PROUCED BY ANSYS.43A FOR 24 NODES OF THE COMPOSITE BLADE
MODEL AND USE IT TO CALCULATE THE CHANGE IN DISPLACEMENT
OVER THE LENGTH OF THE ELADE AND THEN SOLVE THE CLASSICAL
BEAM EQUATIONS.

8¢ 2o o e 3 2 3 3 2 o a2 ofe o e e e e e e e ke e o 3 e e e e e o o 3 afe e o e e afe ol e sl e e e e o ae e s ok

REAL UR1,UXZ,UY1,UYZUZ1,UZ2

REAL UX(2,100),UY(2,100),UZ(2,100)

REAL INT,SLOPE

REAL Y1,Y2,21,22,L1,L2,T1,T2

REAL BETA({100),PHI(100),PS1(100),U(100)
REAL UXNOT{(100),UYNOT(100),UZNOT(100)
REAL BETAP(100),PHIP(100),PSIF(100),UP(100)
DIMENSION A(4,4,12),B(4),X(4)

INTEGER BLADES,NODES,LOADS

REAL H,C,ZETA(100)

OPEN (UNIT=12 FILE="NEWDATA',STATUS="OLD")
OPEN (UNIT=13,FILE="RES5",STATUS="NEW")

H =3.33333
C=90
NODES=2
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BLADES=1
LOADS =4

1 = LEADING EDGE NODE
2 = LEADING EDGE NODE

‘oXeXekakeXe!

DO 1K =1,BLADES
DOSL =1LOADS
DO 2J=13*NODES

T1=9.0
T2=0.0
L1=00
L2=00

READ(12,*) UX1,UY1,UZ1,UX2,UY2,UZ2

UX(1,))=UX1
UYd,n =0yl
Uz ))=UZ1
UX(2,0)=UX2
UYQR,))=UY2
UzZ2J)=UZ2

.....CALCULATE ZETA FOR ISOTROPIC MODEL.........

ann

IF(K.NE.1)GOTO2
IF(L .NE. 1) GOTO2

Y1=L1+4+UY1
Y2=T1+UY2
Z1=12 +1Z1
Z22=T2+UZ2

SLOPE = (Y1 - Y2)/(Z1 - Z2)
INT = (Y1 - (Z1/SLOPE))
ZETA()) = INT/C
C
2 CONTINUE

aan

RN CALCULATE DISFI.LACEMENTS AND ROTATIONS.........

DO3J=1¢
BETA(J)) = -(UZ(1,)) - UZ(2,D)/C
3 CONTINUE
C




DO4I=16
UZNOT(J) = UZ(1.J)*(1 - ZETA())) + UZQJ)*(ZETA(J))
UYNOT()) = UY(1,)*(1 - ZETAQ)) + UY2JY*ZETAQ))
UXNOT() = UX(1,0)*(1 - ZETAQ)) + UXQ2.J)*(ZETA(?)
4 CONTINUE
C
PHI(1) = (UZNOT(3) - UZNOT(2))/H
PHI(2) = (UZNOT(2) - UZNOT(1))/H
PHI(3) = (UZNOT(6) - UZNOT(5))/H
PHI(4) = (UZNOT(S) - UZNOT(4))/H

annn
g
>
m
&
C
3
i
@]
x
2
S
m
3

PSI(1) = (UYNOT(3) - UYNOT(2))/H
PSI(2) = (UYNOT(2) - UYNOT(1))/H
PSI(3) = (UYNOT(6) - UYNOT(S))/H
PSI(4) = (UYNOT(S) - UYNOT(4))/H

Oo00

BETAP(1) = (BETA(3) - BETA(1))/(2*H)
BETAP(2) = (BETA(6) - BETA(4))/(2*H)

PHIP(1) = (PHI(1) - PHI(2))/H
PHIP(2) = (PHI(3) - PHI(4))/H

PSIP(1) = (PSK(1) - PSIQ2))/H
PSIPQ2) = (PSK(3) - PSI4)H

UP(1) = (TTYNOT() - TIMNOT. 1)/ FHD
MENAS TSNS AN T WS AN Ay Ly

UP(2) = (UXNOT(6) - UXNOT(4))/(2*H)
DO 30J = 1,NODES

X(1) = 1000
X(2) = 1000
X(3) = 1000
X(4) = 1000

B(1) = BETAP(J)
B(2) = PHIP(J)
B(3) = PSIP(J)
B(4) = Ury)
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C
DO99I=14
A(LL,Y) = BAYX(L)
99 CONTINUE

WRITE(13,%)
WRITE(13,*) "NUMBER *,L,’ COLUMN FOR SECTION: *J,’,", * BLADE; ’,
A K
WRITE(13,%)
DO6I=14
WRITE(13,666) AQ,L,J)
6 CONTINUE
666 FORMAT (15X,1E15.6)

30 CONTIN.UE
9 CONTINUE
DO 11 I = 1.NODES
WRITE(13,%)
WRITE (13,%) "MATRIX FOR SECTION: *,J,’.’, ' BLADE: ’,K
WRITE(13,%)
DO101=1,4 ,
WRITE (13,667) A(L1,3), A(,2.), A(,3,3), Ad,4,))
10 CONTINUE
11 CONTINUE
667 FORMAT (12X,4E14.6)
DO 300J = 1,6
WRITE (13,669) ZETA(T)
669 FORMAT (2X,1E14.6)
300 CONTINUE
1 CONTINUE
STOP
END




Appendix D

Sample ANSYS Input File

C*+* PREP7 INPUT PRODUCED BY "PATANS" VERSION 1.78
C*** 06-FEB-89 16:28: 9

/TITLE, BLADEZMZ
/NOPR

C*** NODAL COORDWATE DEFINTTION

1, 0.0000000 , 0.0000000 , 0.00000..
2, 0.0000000 , 0.7652763 , 0.9910634
3, 0.0000000 , 1.788908 , 1.688653
4, 0.0000000 , 3.000000 , 2.000000
5, 3.333333 , 0.0000000 , 0.0000000
6, 3333333 , 0.7652769 , 0.9910634
7, 3333333 , 1.783908 , 1.688653
8, 3.333333 , 3.000000 , 2.000000
9. 6666666 , 0.0000000 , 0.0000000
10, 6.666666 , 0.7652769 , 0.9910634
11, 6.666566 1.788908 , 1.688653
12, 6.666666 3.000000 , 2.000000

’

i3, 10.00000 , 0.0000000 , 0.CO00000
1]
?

~ v * e e e e e o=

14, 10.00000 0.7652769 , 0.9910634
15, 10.00000 1.788908 , 1.688653
16, 10.00000 , 3.000000 , 2.000000
17, 13.33333 , 0.0000000 , C.0300000
18, 13.33333 , 0.7652769 , 0.9910634
19, 13.33333 , 1.788908 , 1.688653
20, 13.33333 , 3.000000 , 2.000000
21, 16.66666 , 0.0000000 , 0.0000000
22, 16.66666 , 0.7652769 , 0.9910634
23, 16.66666 , 1.788908 , 1.688653
24, 16.66666 , 3.000000 , 2.000000
25, 20.00000 , 0.0G00000 , 0.00000C0
26, 20.00000 , 0.7652769 , 0.9910534
27, 20.00000 , 1.788908 , 1.688653
28, 20.00000 , 3.000000 , 2.000000
29, 23.33333 , 0.0000060 , 0.0000000
30, 23.33333 , 0.7652769 , 0.9910634

ZZ22Z2222222Z2222222222 22222227

@ e e e W u e e e e W e W e W W w e w w o=
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31,
32,
33,
34:
s,
36,
37,
38,
39,

2zZzzzzzz

301,
302’
303,
304,
305 ,
306,
307.
308,
3(»1
, 310,

. v e ®w w e e -

2222222222

23.33333
23.33333
26.66666
26.66666
26.66666
26.66666
30.00000
30.00000
30.00000

79.99998
79.99998
79.99998
79.99598
79.99998
0.000000
0.000000
0.000000
0.000000
0.000000

, 1.788908
» 3.000000
» 0.0000000
,» 07652769
. 1.788908
. 3.000000
, 0.0000000
, 0.7652769
» 1.788908

7652769
1.788908
3.000000
5.085196
7.079720
7652769
1.788908
3.000000
5.085196
7.079720

?

’

4

1.688653
2.000000
» 0.0000000
» 0.9910634
1.688653
2.000000
» 0.0000000
» 0.9910634
1.688653

-THRU-

» 0.0000C00
» 0.0000000
» 0.0000000
» 0.0000000
» 0.0000000
» 0.0000000
» 0.0000000
» 0.0000000
» 0.0000000
,» 0.0000000

C#+* ELEMENT LIBRARY DEFINITION

ET, 1,

53, 0, 0

8, 0, 0

0

C*** ELEMENT CONNECTIVITY DEFINITION

TYPE,

106,
ic2,
252,
254,
101,
106,
109,
10s,
251,
253,
256,
254,

ommomnnomoemm

. 89,
, 245,
E, 248,

1 $MAT,

103, 252,
103, 106,

nEa ance
LI, 1O,

252, 251,
102, 105,
105, 102,
106, 254,
106, 109,
253, 254,
251, 178,
254, 253,
256, 109,

106 $REAL, 1

252
106

11,

1U90
251
105
102
254
109
254
178
253
109

03, 245, 245
248, 249, 249
245, 93, 93
98, 94, 94
94, 98, 98

-THRU-
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E, 98, 97, 93, 93
E, 93, 97, 248, 248
TYPE, 1 $MAT, 106 $REAL, 2
1, 2, 306, 306
2, 3, 207, 307
i 2, 307, 306, 306
3, 4, 307, 307
4, 308, 307, 307
4, 101, 308, 308 .
101, 309, 308, 308
101, 102, 309, 309
102, 310, 309, 309
102, 103, 310, 310
1, 306, 176, 176
306, 307, 176, 176
307, 177, 176, 176
307, 308, 178, 178
307, 178, 177, 177
308, 309, 251, 251
308, 251, 178, 178
309, 310, 252, 252
309, 252, 251, 251
310, 103, 252, 252
97, 98, 301, 301
98, 302, 301, 301
98, 99, 302, 302
99, 100, 302, 302
100, 303, 302, 302
100, 173, 303, 303

173, 304, 303, 303
173, 174, 304, 304

174 ane N1 20NA
AiTTy Judy T Fr, IUT

174, 175, 305, 305
97, 301, 248, 248
301, 302, 248, 248
248, 302, 249, 249
302, 250, 249, 249
302, 303, 250. 250
303, 299. 250, 250
303, 304, 299, 299
304, 305, 300, 300
304, 300, 299, 299
305, 175, 300, 300

mmmmmmmmmmrnmmmmmmmmmmmmmmmmmmmmmmmmmfummgn

C*** REAL CONSTANT DEFINITION

R, 1,.015,50,0,.015,50,30
RMORE,.015,50,15,.015,50,90
RMORE,.015,50,90,.015,50,15



RMORE,.015,50,30,.015,50,0

R,2,.3,106,90,.3,106,0

RMORE..3,106,90,.3,106,0

. RMORE,.3,106,90,.3,106,0
RMORE,.3,106,90,.3,106,0

C*+*+ MATERIAL DEFINITION

ALPX, 30, 0.2500000E-05

EX . 30, 670000.0

NUXY, 30, 0.3600000

GXY . 30, 246323.5

DENS, 50, 1.000000

ALPX, 50,0.5157655E-06$ALPY, 50,-0.2215747E-06$ALPZ, 50,-0.2215593E-06
EX , 50,0.1920000E+08SEY , 50, 1560000. $EZ ., 50, 1560000.

NUXY, 50,0.1950000E-01$NUYZ, 50,0.2100000 $NUXZ, 59, 0.801000E-02
GXY, 50, 820000.0

DENS, 106, 1.000000

ALPX, 106,0.4391691E-06SALPY, 106, 0.4441189E-068ALPZ, 106,-0.4642736E-06
EX , 106, 91963000. $EY , 106, 61118000. $EZ , 106, 61118000.

NUXY, 106,01.051700E-01$SNUYZ, 106, 2.400697E-01$MNUXZ, 106, 01.051700E-01
GXY, 106, 8381000.

C*** LOADS AND CONSTRAINTS DEFINITION

KTEMP, 0

DDEL,ALL $FDEL,ALL $NTDEL,ALL

TEDEL, 1,99999 $TDEL,1,99999 $EPDEL,1,99999,1,1 $RPG,,,,1
F, 303,MZ , 1000.00

D, LALL , 0.0000000

2,ALL , 0.0000000

3,ALL , 0.0000005

4,ALL , 0.000000

101 AT T N NN
LUk OAiks g VARSIV

102,ALL , 0.000000
103,ALL , 0.000000
176,ALL , 0.00L000
177,ALL , 0.000000
178,ALL, 0.000000
251,ALL, 0.000000
252,ALL, 0.000000

sAvAvivivivivivielvhvl

&t
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Appendix E

Sample ANSYS Output File

GEOMETRY STORED FOR 310 NODES 616 ELEMENTS

TITLE= BLADESMX
##xvk POST1 NODAL DISPLACEMENT LISTING *****

LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME=0.00000 LOAD CASE= 1

T.{E FOLLOWING X,Y.Z DISPLACEMENTS ARE IN NODAL COORDINATES

NODE UX Uy UZ ROTX ROTY ROTZ

1 0.2283E-06-0.1450E-06 0.2482 -0.8246E-01-0.2335E-06 (.1792E-06
2 -0.130ZE-06 0.8199E-01 0.1849  -0.8043E-01-0.2723E-06 0.6654E-07
3 -0.2755E-06 0,1397  0.1002 -0.8131E-01-0.1494E-06-0.1079E-06

4 -0.6522E-07 0.1654 -0.3092E-07-0.6561E-01-0.1118E-~07-0.2450E-06
5 0.7092E-06 0.2541E-04 0.2487 -0.8299E-01-0.2331E-)3 0.7063E-04
6 -0.6694E-04 0.8227E-01 C.1852 -0.8298E-01-0.7047E-03 0.1428E-02
7-0.9195E-04 0.1400 0.1005 -0.8255E-01-0.3136E-03 0.1129E-02

8 -0.8979E-04 0.1658  0.3806E-04-0.8374E-01 0.3)25E-02 0.1229E-01
9 -0.7112E-06 0.1869E-04 0.2495 -0.8311E-01-0.2254E-03-0.1435E-04
10 -0.1100E-03 0.8234E-01 0.1859  -0.8304E-01-0.3756E-03 0.1526E-03
11 -0.1601E-03 0.1402  0.1009 -0.8306E-01-0.4591E-02 0.4760E-03
12 -0.1681E-03 0.1661  0.2943E-03-0.8501E-01-0.4955E-03 0.1485E-02

swwxk POST1 NODAL, DISPLACEMENT LISTING whssw
LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME= 0.00000 LOAD CASE= 1

THE FOLLOWING X,Y,Z DISPLACEMENTS ARE IN NODAL COORDINATES

NODE UX Uy UZ ROTX ROTY ROTZ
13 0.6165E-06 0.3206E-07 0.2503 -0.8328E-01-0,2781E-03-0.2460E-05
14 -0.1491E-03 0.8250E-01 0.1866 -0.8324E-01-0.2747E-03 0.9224E-04
15-0.2319E-03 0.1405 0.1014 -0.8320E-01-0.2429E-03 0.2577E-03
16 -0.2510E-03 0.1664  0.6454E-03-0.8317E-01-0.7682E-04 0.6402E-03
17 0.2653E-05-0.9957E-05 0.2513  -0.8344E-01-0.3180E-03-0.1159E-05
18 -0.1889E-03 0.8265E-01 0.1875 -0.8340E-01-0.2912E-03 0.5352E-04
19 -0.3011E-03 0.1408 0.1021 -0.8336E-01-0.2565E-03 0.1227E-03
20-0.3316E-03 0.1667  0.1171E-02-0.8332E-01-0.1905E-03 0.2422E-03
21 0.4029E-05-0.1126E-04 0.2525 -0.8359E-01-0.3570E-03 0.1469E-05
22 -0.2279E-03 0.8280E-01 0.1885 -0.8356E-01-0.3235E-03 0.4998E-04
23 -0.3685E-030.1411  0.1030 -0.8352E-01-0.2786E-03 0.9272E-04
24 -04111E-03 0,1670  0.1821E-02-0.8349E-01-0.2149E-03 0.1447E-03




¥wwsx POST1 NODAL DISPLACEMENT LISTING ###**

LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME= 0.00000 LOAD CASE= 1

THE FOLLOWING X,Y,Z DISPLACEMENTS ARE IN NODAL COORDINATES

NODE UX [0) 4 vz ROTX ROTY ROTZ
25 0.4624E-05-0.744TE-05 0.2537 -0.8373E-01-0.3962E-03 0.2056E-05
26 -0.2664E-03 0.8295E-01 0.1896  -0.8371E-01-0.3598E-03 0.4692E-04
27 -0.4349E-03 0.1413  0.1039 -0.8368E-01-0.3133E-03 (.8112E-(4
28 -0.4901E-03 0.1673  0.260SE-02-0.8365E-01-0.2551E-03 0.1086E-03
29 0.4668E-05-0.1461E-05 0.2551 -0.5388E-01-2.4353E-03 0.2056E-05
30-0.3048E-03 0.8311E-01 0.1909  -0.8387E-01-0,3975E-03 0.4624E-04
31-0.5009E-03 0.1416 0.1051 -0.8384E-01-0.3501E-03 0.7815E-04
32 -0.5689E-03 0.1677  0.3519E-02-0.8382E-01-0.2934E-03 0.9716E-04
33 0.4400E-05 0.4874E-05 0.2566 -0.8404E-01-0.4744E-('3 0.1770E-05
34 -0.3435E-03 0.8327E-01 0.1923  -0.8402E-01-0.4360E-03 0.4609E-04
35 -0.5669E-03 0.1419  0.1063 -0.8400E-01-0.3882E-03 0.7698E-04
36 -0.6475E-03 0.1680  0.4564E-02-0.8398E-(1-0.3325E-03 0.9279E-04

w#ss+ POST1 NODAL DISPLACEMENT LISTING *****

LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME= 0.00000 LOAD CASE= 1

THE FOLLOWING X,Y,Z DISPLACEMENTS ARE IN NODAL COORDINATES

NODE UX 03 ¢ UZ ROTX ROTY ROTZ
37 0.3576E-05 0.1064E-04 0.2583 -0.8419E-01-0.5135E-03 0.1403E-05
38 -0.3824E-03 0.8343E-01 0.1938  -0.8417E-01-0.4750E-03 0.4610E-04
39 -0.6330E-03 0.1421  0.1077 -0.8416E-01-0.4269E-03 0.7657E-04
40 -0.7260E-03 0.1683  0.5740E-02-0.8414E-01-0.3716E-03 0.9114E-04
41 0.3478E-05 0.1542E-04 0.2600 -0.8435E-01-0.5528E-03 0.1028E-05
42 -0.4215E-03 0,8359E-01 0.1955 -0.8433E-01-0.5142E-03 0.4609E-04
43 -0.6993E-03 0.1424  0.1092 -0.8431E-01-0.4659E-03 0.7641E-04
44 -0.8046E-03 0.1686  0.7045E-02-0.8430E-01-0.4108E-C3 0.9045E-04
45 0.2331E<G5 G.1501E-04 0.261%  -0.8450E-01-0.5522E-03 0.6627E-06
46 -0.4607E-03 0.8374E-01 0.1973  -0.8449E-01-0.5535E-03 0.4603E-04
47 -0.7658E-03 0.1427 0.1108 -0.8447E-01-0.5051E-03 0.7633E-04
48 -0.8832E-03 0,1689  0.8481E-02-0.8445E-01-0.4499E-03 0.9017E-04

ursrs POST1 NODAL DISPLACEMENT LISTING **#**

LOAD STEP 1 ITERATION:= 1 SECTION= 1
TIME= 0.00000 LOAD CASE= 1

THE FOLLOWING X,Y,Z DISPLACEMENTS ARE IN NODAL COORDINATES

NODE UX [0) ¢ Uz ROTX ROTY ROTZ
49 0.2374E-05 0.2132E-04 0.2640 -0.8466E-01-0.6316E-03 0.3082E-06
50 -0.5001E-03 0.8390E-01 0.1992  -0.8464E-01-0.5929E-03 0.4592E-04
51-0.8323E-03 0.1429  0.1125 -0.8463E-01-0.5443E-03 0.7631E-4
52-0.9618E-03 0.1692  0.1005E-01-0.8461E-01-0.4890E-03 0.9007E-04
53 0.1777E-05 0.2224E-04 0.2662  -0.8482E-01-0.6711E-03-0.4259E-07
54 -0.5395E-03 0.8406E-01 0.2012  -0.8480E-01-0.6324E-03 0.4579E-04
55-0.8990E-03 01432  0.1144 -0.8479E-01-0.5837E-03 0.7634E-(4
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56 -0.1040E-02 0.1696  0.1174E-01-0.8477E-01-0.5280E-03 0.9007E-04
57 0.1153E-0S 0.2168E-04 0.2685 -0.8498E-01-0.7106E-03-0.3972E-06
58 -0.5790E-03 0.8422E-01 0.2034 -0.8496E-01-0.6721E-03 0.4571E-04
59 -0.9656E-03 0.1435 0.1164 -0.8494E-01-0.6231E-03 0.7649E-04

60-0.1119E-02 0.1699  0.1357E-01-0.8493E-01-0.5670E-03 0.9021E-04

*#s4% POST1 NODAL DISPLACEMENT LISTING *****

LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME= 0.00000 LOAD CASE="1

THE FOLLOWING X,Y,Z DISPLACEMENTS ARE IN NODAL COORDINATES

NODE UX [0) ¢ UZ ROTX ROTY ROTZ
61 0.5119E-06 0.1953E-04 (.2709 -0.8514E-01-0.7504E-03-0.8223E-06
62 -0.6186E-03 0.8437E-01 0.2057 -0.8512E-01-0.7120E-03 0.4583E-04
63 -0.1032E-02 0,1437 0.1186 -0.8510E-01-0.6628E-03 0.7702E-04
64 -0.1198E-02 0.1702  0.1552E-01-0.8508E-01-0.6060E-03 0.9064E-04
65 -0.1224E-06 0.1570E-04 0.2735 -0.8530E-01-0.7898E-03-0.8985E-06
66 -0.6581E-03 0.8453E-01 0.2082 -0.8528E-01-0.7525E-03 0.4681E-04
67 -0.1099E-02 0.1440  0.1209 -0.8526E-01-0.7031E-03 0.7868E-04
68 -0,1276E-02 0.1705  0.1761E-01-0.8525E-01-0.6448E-03 0.9202E-04
69 -0.6993E-06 0.100SE-04 0.2762 -0.8545E-01-0.8353E-03-0.5314E-05
70 -0.6975E-03 0.8468E-01 0.2107  -0.8544E-01-0.7974E-03 0.4924E-04
71-0.1166E-02 0.1443  0.1233 -0.8543E-01-0.7456E-03 0.8369E-04
72 -0.1355E-02 0.1708  0.1982E-01-0.8541E-01-0.6838E-03 0.9619E-G4

#=#w* POST1 NODAL DISPLACEMENT LISTING %%+

LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME= 0.00000 LOAD CASE= 1

THE FOLLOWING X,Y,Z DISPLACZMENTS ARE IN NODAL COORDINATES

NODE UX [0) 4 UZ ROTX ROTY ROTZ
73 -0.1168E-05 0.2545E-05 0.279%0  -0.8561E-01-0.8485E-03 0.1495E-04
74 -0.7365E-03 0.8483E-01 0.2134  -0.8560E-01-0.8374E-03 0.6572E-04
75-01232E020.1445  0.1258 -0.8555E-01-0.7914E-03 0.1001E-03
76 -0.1434E-02 0.1711  0.2216E-01-0.8557E-01-0.7233E-03 0.1095E-03
77 -0.1141E-05-0.7248E-05 0.2819  -0.8577E-01-0.9971E-03-0.6374E-(4
78 -0.7748E-03 0.8498E-01 0.2163 -0.8576E-01-0.9716E-03 0.7177E-04
79 -0.1298E-02 0.1448  0.1285 -0.8575E-01-0.8764E-03 0,1399E-03
80-0.1512E-02 0.1715  0.2464E-01-0.8573E-01-0.7690E-03 0.1493E-03
81 -0.1250E-07-0.1645E-04 0.2850 -0.8594E-01-0.8935E-03 0.2113E-04
82 -0.8125E-03 0.8514E-01 5.2192 -0.8593E-01-0.8052E-03 0.1593E-03
83 -0.1363E-02 0.1451  0.1313 -0.8591E-01-0.8318E-03 0.2522E-03
84 -0.1591E-02 0.1718  0.2724E-01-0.8589E-01-0.7812E-03 0.2726E-03

w#%at POST1 NODAL DISPLACEMENT LISTING **#**

LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME= 0.00000 LOAD CASE= 1

THE FOLLOWING X,Y,Z DISPLACEMENTS ARE IN NODAL COORDINATES

NODE UX 1604 Uz ROTX RGTY ROTZ
85 0.3426E-05-0.1887E-04 0.2882 -0.8510E-01-0.8927E-03 0.1602E-03
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86 -0.8497E-03 0.8529E-01 0.2223 -0.8609E-01-0.1473E-02 0.3925E-03
87 -0.1428E-02 0.1453  0.1342 -0.8609E-01-0.1834E-02 0.9139E-03

88 -0.1668E-020.1721  0.2998E-01-0,8601E-01-0.1229E-02 0.8389E-03
89 0.9019E.05-0.1026E-05 0.2916  -0.8623E-01-0.9567E-03-0.6209E-04
90 -0.8862E-03 (.8544E-01 0.2256 -0.8629E-01-0.1727E-02 0.2659E-03
91 -0.1491E-02 0.1456  0.1373 -0.8616E-01-0.9865E-03 0.7199E-03

92 -0.1744E-020.1724  0.3280E-01-0.8626E-01 0.5281E-03 0.1162E-03
93 0.8251E-05 0.3780E-04 0.2951 -0.8635E-01-0.1197E-02 0.4802E-03
94 -0.9152E-03 0.8552E-01 0.2290  -0.8624E-01-0.2103E-02 0.6081E-03
95 -0.1555E-02 0.1459  0.1404 -0.8695E-01 0.1485E-02-0.1051E-02

96 -0.1833E-020.1728  0.3575E-01-0.8549E-01-0.4080E-02 0.9093E-02

w#s#* POST1 NODAL DISPLACEMENT LISTING *****

LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME= 0.00000 LOAD CASE= 1

THE FOLLOWING X.,Y,Z DISPLACEMENTS ARE IN NODAL CCGORDINATES

NODE UX L6) ¢ uz ROTX ROTY ROTZ

97 0.1600E-05 0.4343E-04 0.2986 -0.8676E-01-0.9476E-03 0.5884E-06
98 -0.9377E-03 0.8575E-01 0.2324 -0.8880E-01-0.9475E-03 0.4544E-06
99 -0.1599E-02 0.1461  0.1439 -0.8790E-01-0.9473E-03-0.2643E-07
100 -0.1893E-02 0.1730  0.3913E-01-0.1040  -0.9469E-03-0.9950E-07
101 0.4105E-060.1363 -0.1725 -0.5966E-01 0.2545E-06-0.1400E-06
102 -0.6052E-07 0.7385E-01-0.3375 -0.7488E-01 0.4199E-06 0.3117E-06
103 0.1633E-05 0.1145E-05-0.4963  -0.7847E-01 0.2525E-06 0.8813E-06
104 -0.5301E-04 0.1365 -0.1727 -0.3408E-01 0.6142E-02 0.7814E-02
105 -0.1845E-04 (0.7431E-01-0.3371 -0.8262E-01 C.2739E-02 0.2078E-02
106 .1708E-04 0.8081E-04-0.4567 -0.8438E-01 0.1691E-02-0.3974E-03
107 -0.1082E-03 0.1368 -0.1729 -0.8296E-01 0.3590E-04 0,3608E-02
108 -0.4432E-04 0.7400E-01-0.3386 -0.8302E-01-0.4169E-04 0.2629E-02

wwxxw POST1 NODAL DISPLACEMENT LISTING *»»**

LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME= 0.00000 LOAD CASE= 1

THE FOLLOWING X,Y,Z DISPLACEMENTS ARE IN NODAL COORDINATES

NODE UX 19) ¢ UZ ROTX ROTY ROTZ
109 0.1211E-05 0.6931E-04-0.4975 -0.8247E-01-0.6907E-03 0,6106E-03
110 -0.1729E-03 C.1371 -0.1727 -0,8311E-01 0.5550E-03 0.1316E-02
111 -0.7552E-04 0.7434E-01-0.3384 -0.8311E-01 0.9901E-03 0.1157E-02
112 0.4388E-05 0.4588E-04-0.4981 -0.8328E-91 0.6848E-03-0.4932E-03
113 -0.2345E-03 0.1373 -0.1725 -0.8329E-01 0.2957E-04 0.5057E-03
114 -0.1083E-03 0.7442E-01-0.3386  -0.83Z8E-01 0.1907E-03 0.5795E-03
115 0.2945E-05 0.3405E-04-0.4985 -0.8328E-01-0.5128E-04 0.2282E-03
116 -0.2987E-03 0.1376 -0.1722 -0.8345E-01-0.5216E-04 0.2193E-03
117 -0.1429E-03 0.7456E-01-0.3386  -0.8344E-01 0.8841E-04 0.2242E-03
118 0.1851E-05 0.2615E-04-0.4988 -0.8344E-01 0.1137E-03-0.1347E-04
119 -0.3638E-03 0.1378 -0.1718 -0.8362E-01-0.1374E-03 0.1229E-03
120 -0,1784E-03 0.7469E-01-0.3385  -0.8360E-01-0.2461E-04 0.1071E-03

w##%¢ POST1 NODAL DISPLACEMENT LISTING *##%*
LOAD STEP 1 ITERATION= 1 SECTION= 1
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TIME= (.00000 LOAD CASE= 1
THE FOLLOWING X,Y,Z DISPLACEMENTS ARE IN NODAL COORDINATES

NODE UX [0). 4 UzZ ROTX ROTY ROTZ
121 0.6841E-06 0.2160E-04-0.4990 -0.8359E-01 0.2737E-04 0.1387E-04
122 0.4292E-03 0.1381 -0,1712 -0.8378E-01-0.1878E-03 0.9022E-04
123 -0.2142E-03 0.7482E-01-0.3383 -0.8376E-01-0.8478E-04 0.6258E-04
124 -0.1328E-06 0.1914E-04-0.4991 -0.8373E-01-0.5041E-05 0.3202E-05
125 -0.4946E-03 0.1383 -0.1705 -0.8394E-01-0.2321E-03 0.7927E-(4
126 -0.2500E-03 0.7496E-01-0.3379 -0.8391E-01-0.1341E-03 0.476GE-04
127 -0.7424E-06 0.1797E-04-0.4990 -0.8389E-01-0.4690E-04 0.1786E-05
128 -0.5599E-03 0.1386 -0.1697 -0.8410E-01-0.2735E-03 0.7555E-04
129 -0.2857E-03 0,7510E-01-0.3374  -0.8407E-01-0.1775E-03 0.4253E-04
130 -0.1231E-05 0.1769E-04-0.4988  -0.8404E-01-0.8667E-04 0.7756E-06
131 -0.6250E-03 0.1389 -0.1687 -0.8426E-01-0.3137E-03 0.7419E-04
132 -0.3213E-03 0.7524E-01-0.3367 -0.8423E-01-0.2185E-03 0.4078E-04

wessx POST1 NODAL DISPLACEMENT LISTING *****

LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME= 0.00000 LOAD CASE= 1

THE FOLLOWING X,Y Z DISPLACEMENTS ARE IN NODAL COORDIMNATES

NODE UX Uy UZ ROTX ROTY ROTZ
133 -0.1659E-05 0.1812E-04-0.4984  -0.8420E-01-0.1264E-03 0.3820E-06
134 -0.690CE-03 0.1391 -0.1676 -~0.8442E-01-0.3532E-03 0.7363E-04
135 -0.3568E-03 0.7538E-01-0.3359  -0.8439E-01-0.2584E-03 0.4014E-04
136 -0.2055E-05 0.1918E-04-0.4979  -0.8436E-01-0.1660E-03 0.2365E-06
137 0.7549E-03 0.1394 -0.1663 -0.8458E-01-0.3923E-03 0.7336E-04
138 -0.3921E-03 0.7553E-01-0.3350 -0.8455E-01-0.2978E-03 0.3989E-04
139 -0.2435E-05 0.208CE-04-0.4973  -0.8452E-01-0.2054E-03 0.2574E-06
140 -0.8196E-03 0.1397 -0.1650 -0.8474E-01-0.4312E-03 0.7326E-04
141 -0.4274E-03 0.7567E-01-0.3339  -0.8470E-01-0.3369E-03 0.3982E-04
142 -0.2810E-05 0.2298E-04-0.4965 -0.8467E-01-0.2448E-03 0.3855E-06
143 0.8%43E-03 0.1399 -0.1635 -0.8489E-01-0.4698E-03 0.7335E-04
144 -0.4626E-03 0.7581E-01-0.3328 -0.8486E-01-0.3758E-03 0.3987E-04

wwwe+ POST1 NODAL, DISPLACEMENT LISTING *****

LOAD STEP 1 ITERATICN= 1 SECTION= 1
TIME=0.00000 LOAD CASE= 1

THE FOLLOWING X,Y,Z DISPLACEMENTS ARE IN NODAL COORDINATES

NODE UX [0) § UZ ROTX ROTY ROTZ
145 -0.3190E-05 0.2570E-04-0.4957 -0.8483E-01-0.2841E-03 0.5941E-06
146 -0.9490E-03 0.1402 -0.1619 -0.8505E-01-0.5082E-03 0.7379E-04
147 -0.4978E-03 0.7595E-01-0.3314  -0.8502E-01-0.4144E-03 0.4012E-04
148 -0.3577E-05 0.2898E-04-0.4947 -0.8499E-01-0.3234E-03 0.8722E-06
149 -0.1014E-02 0.1404 -0.1601 -0.8521E-01-0.5461E-03 0.7522E-04
150 -0.5330E-03 0.7610E-01-0,3300 -0.8517E-01-0.4528E-03 0.4086E-04
151 -0.3965E-05 0.3286E-04-0.4935 -0.8514E-01-0.3628E-03 0.1226E-05
152 -0.1078E-02 0.1407 -0.1582 -0.8537E-01-0.5833E-03 0.7951E-04
153 -0.5683E-03 0.7624C-01-0.3284  -0.8533E-01-0.4906E-03 0.4298E-(4
154 -0.4324E-05 0.3733E-04-0,4922 -0.8530E-01-0.4021E-03 0.1685E-05




155 -0.1143E-02 0.1410  -0.1562 -0.8552E-01-0.6186E-03 0.9233E-04
156 -0.6036E-03 0.7638E-01-0.3267 -0.8548E-01-0.5270E-03 0.4911E-04

*»ae® POST1 NODAL DISPLACEMENT LISTING *****

LOADSTEP 1 IYERATION= 1 SECTION= 1
TIME= (.0000C LOAD CASE= 1

THE FOLLOWING X,Y,Z DISPLACEMENTS ARE IN NODAL COORDINATES

NODE X [0) ¢ UZ ROTX ROTY ROTZ

157 -0.4588E-05 0.4231E-04-0.4908 -0.8545E-01-0.4415E-03 0.2323E-05
158 -0.1209E-02 0.1412 -0.1541 -0.8568E-01-0.6475E-03 0.1Z86E-03
159 -0.63y2E-03 0.7652E-01-0.3249  -0.8563E-01-0.5590E-03 0.6612E-04

" 160 -0.4638E-05 0.4761E-04-0.4893  -0.8560E-01-0.4809E-03 0.3361E-05
161 -0.1275E-02 0.1415 -0.1518 -0.8584E-01-0.660CE-03 G.2362E-03
162 -0.5754E-03 0.7666E-01-0.3229 -0.8579E-01-0.5799E-03 0.1185E-03
163 -0.4264E-C5 0.5270E-04-0.4876 -C.8575E-01-0.5221E-03 0.3852E-05
164 -0.13435.02 0.1417 -0.1494 -0.8598E-01-0.6383E-C3 0.5498E-03
165 -0.7129E-03 0.7681E-01-0.3208  -0.8556E-01-0.5539E-03 0.2543E-03
166 -0.3085E-05 0.5658E-04-0.4858 -0.8591E-01-0.5570KE-03 0.1756E-04
167 -0.1412E-02 0.1420 -0.1468 -0.8627E-01 0.1229E-03 0.1113E-02
168 -0.7539E-03 0.7698E-01-0.3185 -0.8612E-01-0.5036k-03 0.7403E-03

#atx: POST1 NODAL DISPLACEMENT LISTING *#*%*

LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME= (.00000 LOAD CASE= 1

THE FOLLOWING X.,Y,Z DISPLACEMENTS ARE IN NODAL COORDINATES

NODE UX vy UZ ROTX ROTY ROTZ

169 -0.4994E-06 0.5641E-04-0.4839 -0.8607E-01-0.6280E-03-0.3022E-(4
170 -0.1483E-02 0.1424  -0.1438 -0.8449E-01-0.2202E-02 0.8340E-02
171 0.7818E-03 0.7748E-01-0.3153  -0.8615E-01-0.7363E-03 0.2577E-02
172 0.1782E-05 0.3875E-04-0.4817 -0.8660E-01-0.4814E-03-0.1184E-03
1753 <0.1555E-0Z 0.1425 -0.1412 -0.i057 -0.9461E-03 0.1274E-07

174 -0.8446E-03 0.7725E-01-0.3137  -0.9442E-01-0.9461E-03 0.3650E-06
175 0.1149E-06 0.4381E-04-0.4797 -0.9037E-01-0.9464E-03 0.2743E-06
176 0.3Z40E-06-0.8199E-01 0.1849 -0.7589E-01-0.1797E-06 0.1829E-06
177 0.1916E-0¢ 0..5»7 0.1002 -0.7287E-01-C.5586E-07 0.2508E-06
178 -0.1525E-06-0.1654  0.2653E-06-0.4791E-01 0.1620E-06 0.2933E-06
179 0.6537E-04-0.§227E-01 0.1852 -0.8329E-01-0.8238E-03-0.8916E-03
180 0.9284E-04-0.1400 0.1004 -0.8350E-01-0.9032E-03-0.2492E-02

*axx POS11 NODAL DISPLACEMENT LISTING ¥4##»

LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME= (.00000 LOAD CASE= 1

THE FC. " OWING X,Y,Z DISPLACEMENTS ARE IN NODAL COOKDINATES

NODE UX Uy UZ ROTX ROYTY ROTZ
181 0.1018E-03-0.1659 -0.3114E-03-0.8462E-01 0.1070E-02-0.3890E-G2
182 0.1132E-03-0.8239E-01 0.1858 -0.8314E-Ci-0.2151E-03-0.4507E-04
183 0.1693E-03-0.1403 0.1007 -0.8300E-01-0.1638E-03-0.2147E-04
184 U.1834E-03-0.1661 0.2506E-03-0.8280E-01-0.3547E-03-0.1335E-03

146




147

185 0.1559E-03-0.8255E-01 0.1866 -0.8329E-01-0.2525E-03-0.5205E-04
186 0.2425E-03-0.1406 0.1013 -0.8317E-01-0.2132E-03-0, {017E-03
187 0.2593E-03-0.1664 0.7082E-03-0.8301E-01-0.1247E-03-0.1559E-02
188 0.1965E-03-0.8269E-01 0.1875 -0.8342E-01-0.2907E-03-0.46305-04
189 0.3095E-03-0.1408 0.1G21 -0.8332E-01-0.2480E-03-0.7179E-(4
190 0.3349E-03-0.1667 0.1248E-02-0.8324E-01-0.1838E-03-0.8376E-04
191 0.2354E-03-0.8282E-01 0.1885 -0.8355E-01-0.3271E-03-0.4274E-04
192 0.3743E-03-0.1411  0,1030 -0.8349E-01-0.2795E-03-0.7275E-04

»xxex POST1 NODAL DISPLACEMENT LISTING % %#*

LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME=0,00000 LOAD CASE= 1

“THE FOLLOWING X,Y Z DISPLACEMENTS ARE IN NODAL COORDINATES

NODE UX [8) 4 (974 ROTX ROTY ROTZ
193 0.4120E-03-0.1670  0.1892E-02-0.8344E-01-0.2122E-03-0.8890E-04
194 0.2735E-03-0.8296E-01 0.1896 -0.8370E-01-0.3628E-03-0.4235E-04
195 0.4390E-03-0.1413 0.1040 -0.8366E-01-0.3138E-03-0.7360E-04
196 0.4900E-03-0.1673 0.2660E-02-0.8363E-01-0.2504E-03-0.8878E-04
197 0.3115E-03-0.8310E-01 0.1909 -0.8385E-01-0.3995SE-03-0.4284E-04
198 0.5042E-03-0.1416 0.1051 -0.8383E-01-0.3502E-03-N.7496E-04
199 0.5684E-03-0.1676 0.3559E-02-0.8381E-01-0.2894E-3-0.9007E-04
200 0.3497E-03-0.8325E-01 0.1923 -0.8401E-01-0.4373E-03-0.4361E-04
201 0.5698E-03-0.1418 0.1063 -0.8399E-01-0.3880E-03-0.7606E-04
202 0.6472E-03-0.1680 0.4590E-02-0.8397E-01-0.3291E-03-0.9094E-04
203 0.3881E-03-0.8340E-01 0.1928 -0.8417E-01-0.4758E-03-0.4433E-04
204 0.6359E-03-0.1421 0.1077 -0.8415E-01-0.4267E-03-0.7684E-04

wxwke POST1 NODAL DISPLACEMENT LISTING t##**

LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME= 0.00000 LOAD CASE= 1

THE FOLLOWING X,Y,Z DISPLACEMENTS ARE IN NODAL COORDINATES

NODE UX [9) 4 Uz ROTX ROTY ROTZ
205 0.7262E-03-0.1683  0.5754E-02-0.8414E-01-0.3690E-03-0.9156E-04
206 0.4267E-03-0.8355E-0t 0.1955 -0.8433E-01-0.5149E-03-0.4491E-04
207 0.7023E-03-0.1424 0.109z -0.8431E-01-0.4660E-03-0.7735E-04
208 0.8053E-03-0.1686 0.7051E-02-0.8430E-01-0.4090E-03-0,9197E-04
209 0.4655E-03-0.8371E-01 0.1973 -0.8449E-01-0.5543E-03-0.4538E-04
210 0.7689E-03-0.1426 0.1108 -0.8447E-01-0,5057E-03-0.7767E-04
211 0.8845E-03-0.1689  0.8481E-02-0.8445E-01-0.4491E-03-0.9222E-04
212 0.5044E-03-0.8386E-01 0.1992 -0.8464E-01-0.5939E-03-0.4576E-04
213 0.8357E-03-0.1429 0.1125 -0.8463E-01-0.5455E-03-0.7786E-04
214 0.9638E-03-0.1692  0.1005E-01-0.8461E-01-0.4892E-03-0.9234E-04
215 0.5433E-03-.8402E-01 0.2012 -0.8480E-01-0.6337E-03-0.4606E-04
216 0.9025E-03-0.1431  0.1144 -0.8478E-01-0,5855E-03-0.7793E-04

wakex POST1 NODAL DISPLACEMENT LISTING **##*

LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME= 0.00000 LOAD CASE= 1

THE FOLLOWING X,Y Z DISPLACEMENTS ARE IN NODAL COORDINATES
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.~ NODE UX uy [§74 ROTX ROTY ROTZ

f 217 0.1042E-02-0.1695  0.1174E-01-0.8477E-01-0.5293E-03-0.9234E-04
218 0.5822E-03-0.8417E-01 02034 -0.8496E-C1-0.6735E-03-0.4628E-(4

219 0.9694E-03-0.1434 0.1164 -0.8494E-01-0.6257E-03-0.7790E-04
220 0.1i22E-(2-0.1698  0.1357E-01-0.8493E-01-0.5695E-03-0.9223E (4
221 0.6212E-03-0.8433E-01 0.2057 -0.8511E-01-0.7135E-03-0.4641E-04

222 0.1036E-02-0.1437 0.1186 -0.8510E-01-0.6659E-03-0.7776E-04
223 0.12028-02-0.1701  0.1554E-01-0.35G8E-01-0.6096E-03-0.9199E-04
224 0.6602E-03-0.8449E-01 0.2082 -0.8527E-01-0.7534E-03-0.4641E-04

225 0.1103E-02-0.1439  0.1209 -0.8525E-01-0.7061E-03-0.7742E-04
226 0.1281E-02-0.1705  0.1764E-01-0.8524E-~01-0.6496E-03-0.9162E-04
227 0.6992E-03-0.8464E-01 0.2108 -0.8542E-01-0.7944E-03-0.4662F-4

228 0.1170E-02-0.1442  0.1233 -0.8541E-01-0,7468E-03-0.7718E-04

vy POST1 NODAL DISPLACEMENT LISTING ***#*

LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME= 0.00000 LOAD CASE= 1

THE FOLLOWING X,Y,Z DISPLACEMENTS ARE IN NODAL COORDINATES

NODE UX [0) 4 UZ ROTX ROTY ROTZ

229 0.1361E-02-0.1708  0.1987E-01-0.8540E-01-0.6896E-03-0.9133E-04
230 0.7381E-03-0.8480E-01 0.2135 -0.8557E-01-0.8305E-03-0.4507E-04
231 0,1237E-02-0.1445 0.1259 -0.8556E-01-).7847E-03-0.7546E-04
232 0.1440E-02-0.1711  0.2224E-01-0.8556E-01-0.7284E-03-0.5046E-04
233 0.7765E-03-0.8496E-01 0.2163  -0.8571E-01-0.8870E-03-0.5491E-04
234 0.1303E-02-0.1447 0.1286 -0.8572E-01-0.8360E-03-0.8137E-04
235 0.1519E-02-0.1714  0.2473E-01-0.8573E-01-0.7731E-03-0.9701E-04
236 0.8141E-03-0.8512E-01 0.2193 -0.8586E-01-0.8836E-03-0.5124E-04
237 0.1368E-02-0.1450 0.1314 -0.8587E-01-0.8260E-03-0.6253E-04
238 0.1598E-02-0.1717  0.2737E-01-0.8591E-01-0,7836E-03-0.6628E-04
239 0.8512E-03-0.8530E-01 0.2224 -0.8601%-01-0,1085E-02-0.1141E-03
240 0.1431E-02-0.1453  0.1343 -0.8597E-01-0.1064E-02-0.1831E-03

wewas POST1 NODAL DISPLACEMENT LISTING %*#**

LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME=(.00000 LOAD CASE= 1

THE FOLLOWING X,Y,Z DISPLACEMENTS ARE IN NODAL COOR{JINATES

NGDE UX [6) ¢ Uz ROTX ROTY ROTZ
241 0.1677E-02-0.1720  0.3014E-01-0.8593E-01-0.9888E-07-0.3213E-03
242 0.8882E-03-0.8548E-01 0.2255 -0.8630E-01-0.9774E-03-0.2885E-93
243 0.1486E-02-0.1456 0.1373 -0.8614E-01-0 5754E-03-0..268E-03
244 0.1757E-02-0.1723  0.3306E-01-0.8710E-01-0.3391E-03 0.9434E-03
245 0.9283E-03-0.8566E-01 0.2289 -0.8598E-01-0.2814E-02-0.1298E-02
246 0.1563E-02-0.1460  0.1403 -0.8540E-01-0.4198E-02-0.4295E-02
247 0.1827E-02-0.1727  0.3641E-01-0.7997E-01-0,2706E-02-0.6971E-02
248 0.9401E-03-0.8566E-01 0.2324 -0.9340E-01-0.9474E-03 0.6722E-06 =
249 0.1600E-02-0.1460  0.1439 -0.9656E-(1-0.9466E-03 0.9592E-06 v
250 0.1894E-02-0.1729  0.3913E-01-0.1226 -0.9467E-03 0.4926E-06 K
251 -0.3625E-06-0.1363 -0.1725 -0.4332E-01 0,2258E-06 0.1503E-06
252 -0.7122E-06-0.738SE-01-0.3375  -0.6374E-01 0.3074E-06 0.3940E-06

*4oxx POST1 NODAL DISPLACEMENT LISTING *##*




LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME= 0.00000 LOAD CASE= 1

THE FOLLOWING X,Y,Z DISPLACEMENTS ARE IN NODAL COORDINAT 3§

NODE UX 162 ¢ Uz RCTX ROTY ROTZ
253 0.6955E-04-0.1370 -0.1714 -0.8863E-01 0.2908E-02-0.4036E-02
254 0.9713E-05-0.7479E-01-0.3357 -0.8870E-01 0.2344E-02-0.1802E-02
255 0.9650E-04-0.1370 -0.1722 -0.8215E-01-0.2142E-03-0.7699E-03
256 0.3763E-04-0.7413E-01-0.3380 -0.8196E-01 0.3014E-03-0.8906E-03
257 0.1603E-03-0.1372 -0.1723 -0.8305E-01 0.1546E-03-0.1641E-03
258 0.6870E-04-0.7437E-01-0.3381 -0.8351E-01 0.2934E-03-0.4028E-03
259 02250E-03-0.1374 -0.1723 -0.8324E-01-0.4686E-04-0.7246E-04
260 0.1034E-03-0.7444E-01-0.3384 -0.8335E-01 0.8070E-04-0.5995E-04
261 0.2919E-03-0.1376 -0.1721 -0.8344E-"1-0.8589E-04-0.6043E-04
262 0.1389E-03-0.7455E-01-0.3385 -0.%350E-01 0.1094E-04-0.4276E-04
263 0.3589E-03-0.1378 -0.1717 -0.8.62E-01-0.1380E-03-0.6539E-04
264 0.1752E-02-0.7467E-01-0.3385 -0.c »63E-01-0.4341E-04-0,3166E-04

wxw POST1 NODAL DISPLACEMENT LISTING *#***

LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME= 0.00000 LOAD CASE= 1

THE FOLLOWING X,Y,Z DISPLACEMENTS ARE IN NCDAL COCRDINATES

NODE UX 19) ¢ UZ ROTX ROTY ROTZ

265 0.4256E-03-0.1381 -0.1712 -0.8379E-01-0.1837E-03-0.6974E-04
266 0.2113E-03-0.7479E-01-0.3382 -0.8377E-01-0.9073E-04-0.3551E-04
267 0.4919E-03-0.1383 -0.1705 -0.8395E-01-0.2275E-03-0.7280E-04
268 0.2473E-03-0.7493E-01-0.3379 -0.8392E-01-0,1344E-03-0.3786E-04
269 0.5578E-03-0.1386 -0.1697 -0.8411E-01-0.2698E-03-0.7448E-04
270 0.2831E-03-0.7507E-01-0.3374 -0.8407E-01-0.1765E-03-0.3951E-04
271 0.6235E-03-0.1388 -0.1687 -0.8427E-01-0.3110E-03-0.7530E-04
272 0.3186E-03-0.7520E-01-0.3367 -0.8423E-01-0.2174E-03-0.4032E-04
273 0.6890E-03-0.1391 -0.1676 -0.8442E-01-0.3515E-03-0.7559E-04
274 0.3540E-03-0.7534E-01-0.3359 -0.8439E-01-0.2575E-03-0.4060E-04
275 0.7543F-03-0.1394 -0.1663 -0.8458E-01-0.3916E-03-0.7557E-04
276 0.3892E-03-0.7548E-01-0.3350 -0.8455E-01-0.2972E-03-0.4056E-04

wsss* POST1 NODAL DISPLACEMENT LISTING **%**

LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME= 0.006000 LOAD CASE= 1

THE FOLLOWING X,Y.Z DISPLACEMENTS ARE IN NODAL COORDINATES

NODE UX [5) ¢ Uz ROTX ROTY ROTZ
277 0.8196E-03-0.1396 -0.1650 -0.8474E-01-0.4314E-03-0.7539E-04
278 0.4244E-03-0.7562E-01-0.3339 -0.8470E-01-0.3366E-03-0.4032E-04
279 0.8847E-03.0.1399 -0.1635 -0.8490E-01-0.4709E-03-0.7510E-04

+280 0.4595E-03-).7576E-01-0.3328 -0.8486E-01-0.3758E-03-0.3996E-04
281 0.9499E-03-0.1401 -0.1618 -0.8506E-01-0,5103E-03-0.7477E-04
282 0.4946E-03-0.7590E-01-0.3314  -0.8502E-01-0.4147E-03-0.3951E-04
283 0.1015E-02-0.1404 -0.1601 -0.8522E-01-0.5494E-03-0.7443E-04
284 0.5297E-03-0.7603F 51-0.3300 -0.8518E-01-0.4536E-03-0.3902E-04
285 0.1080E-02-0.1406¢ -0.1582 -0.8538E-01-0.5884E-03-0,7423E-04
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286 0.5647E-03-0.7617E-01-0.3284 -0.8534E-01-0.4924E-03-C.3857E-04
287 0.1145E-02-0.1409 -0.1562 -0.8554E-01-0.6273E-03-0.7438E-04
288 0.6000E-03-0.7630E-01-0.3267 -0.8550E-01-0.5312E-03-0.3843E-04

¥wk POST1 NODAL DISPLACEMENT LISTING *##%#*

LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME= 0.00000 LOAD CASE= 1

THE FOLLOWING X,Y,Z DISPLACEMENTS ARE IN NODAL COORDINATES

NODE UX uy UZ ROTX ROTY ROTZ
289 0.1210E-02-0.1411 -0.1540 -0.8571E-01-0.6650E-03-0.7816E-04
290 0.6354E-03-0.7644E-01-0.3249 -0.8565E-01-0.5700E-03-0.3984E-04
291 0.1276E-02-0.1414 -0.1517 -0.8587E-01-0.7005E-03-).8176E-04
292 0.6713E-03-0.7657E-01-0.3229 -0.8581E-01-0.6080E-03-0.4673E-04
293 0.134(E-02-0.1417 41493 -0.8600E-01-0.7395E-03-0.1918E-03
294 0.7079E-03-0.7670E-01-0.3208 -0.8598E-01-0.6324E-03-0.8570E-04
295 0.1409E-02-0.1419 -0.1468 -0.8665E-01-0.5437E-03 0.2074F-04
296 0.7463E-03-0.7686E-01-0.3185 -0.8612E-01-0.6250E-03-0.2036E-03
297 0.1474E-02-0.1422 -0.1440 -0.8189E-01-0.1004E-02-0.3559E-)2
298 0.7778E-03-0.7702E-01-0.3161 -0.8481E-01-0.6506E-03-0.9445E-03
299 0.1559E-02-0.1424 -0.1412 -0.1262 -0.9464E-03-0.1304E-06
300 0.8449E-03-0.7716E-01-0.3137 -0.1056 -0.9461E-03-0.1230E-06

wass* POST] NODAL DISPLACEMENT LISTING *****

LOAD STEP 1 ITERATION= 1 SCCTION= 1
TIME= 0.0C000 LOAD CASE= 1

THE FOLLOWING X,Y,Z DISPLACEMENTS ARE IN NOD/£ . COORDINATES

NODE U©X uy vz ROTX ROTY ROTZ

301 0.1193E-05 (.4347E-04 0.2324 -0.9610E-01-0.9475E-03 0.5418E-06
302 0.7784E-06 0.4367E-04 0.1439  0.1118 -0.9471E-03 0.4921E-06
303 0.3327E-06 0.4374E-04 0.3913%-11-0.1697 -0.9470E-03 0.355(E-06
304 01904E.0604278E-04.0,1412 01215  -0.9452B03 5.3686E-06
305 0.1605E-06 0.4377E04-0.3137 -0.1031 -0.9462E-03 0.2380E-06
306 0.1155E-06-0.1835E-06 0.1849 -0.732SE-01-0.2278E-06 0.1110E-06
307 0.3081E-07-0.8591C-07 0.1002 -0.5778E-01-0.1545E-06 0.5496E-07
308 0.0060 0.000 0.0000 0.0000 0.0000 9.0000

309 0.2274E-03 0.3168E-06-0.1725 -0.4793L-01 0.2268E-05 0.7406E-07

310 -0.4158E-06 0.7867E-06-0.3375  -0.6611E-01 0,3620E-06 0.3978E-06

MAXIMUMs
NODE 250 100 124 303 104 8
VALUE 0.1894E-02 0.1730 -0.4991 -0.1697 0.6142E-02 0.1229E-01
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